Нейроискусство: зачем создают картины из нейронов мозга

в 15:38, , рубрики: биология, Биотехнологии, Блог компании Mail.Ru Group, живопись, искусство, картины, мозг, наука, Научно-популярное, нейробиология, нейроны

image

Искусство и наука редко пересекаются. Когда это происходит и прикладное исследование, понятное лишь специалистам, обогащается визуальными образами, наука получает больше внимания обывателей. Сравните сами: исследования мозга по всему миру ведутся каждый день, но графики, диаграммы и рентгеновские снимки не вызывают у нас сильные эмоции. Однако, как только появляются красочные рисунки, иллюстрирующие воздействие на мозг, новость получает большой отклик. Вне контекста научных открытий нам просто нравится смотреть на работу внутренних органов, особенно интересно следить за функционированием полушарий, отвечающих за мышление.

Картография мозга

image
Коннектом мозга мыши

Ученые из Allen Institute for Brain Science в Сиэтле создали карту, которая детально отображает взаимосвязи между клетками мозга мыши. До создания такого рода картин не додумался бы ни один художник — исследователи вводили флуоресцентный вирус зеленого цвета в определенную зону мозга живой мыши. Вирус заражал нейроны вблизи места инъекции, и через три недели распространялся по всему мозгу. В результате карта взаимосвязей, происходящих в одной из областей мозга, отображалась в виде зеленой флуоресцентной сетки зараженных нейронов.

image

Даже «обычные» карты мозга впечатляют. Ученые из Университета штата Калифорния в Беркли разработали интерактивную карту, которая показывает, где хранятся значения определенных слов, а также как связаны слова и их значения.

image

Самую крупную в мире трехмерную карту нейронных сетей коры головного мозга опубликовали нейробиологи из Института Аллена, Гарвардской медицинской школы и NERF (исследовательского проекта в сфере нейроэлектроники). Разработка карты заняла более десяти лет: исследователи проанализировали колоссальные массивы данных по мозговой активности, и это позволило установить взаимосвязь между структурой и функциями мозга.

Чтобы создать карту мозга мыши, на экран перед их глазами выводили горизонтальные и вертикальные линии — нейроны реагировали на эти визуальные сигналы. Затем были сделаны ультратонкие срезы мозга. Это позволило получить многочисленные изображения нейронов и синапсов, которые были использованы в создании 3D-модели.

Мозг как самая главная загадка

image

До сих пор не существует полной карты человеческого мозга. Есть несколько подходов к решению этой задачи. Один из способов заключается в расшифровке пути, по которым электрические сигналы путешествуют между нейронами, когда мозг выполняет определенные функции. Проблема в том, что каждый ломтик толщиной пятьдесят миллиардных долей метра приходится тщательно фотографировать с помощью электронного микроскопа, а затем программно пытаться восстановить связи между нейронами поштучно.

Процесс занимает очень много времени, но есть способы ускорить его. Например, можно использовать различные краски, позволяющие помечать цветом разные нейроны и связи, чтобы их было лучше видно. В проекте EyeWire любому пользователю в формате игры предлагают раскрасить нейронные связи на картинке с реальными нейронами сетчатки глаза, снятые электронным микроскопом. Вот так наука добивается прогресса через геймификацию.

Холст и краски нейронных связей

image

Выпускник факультета нейробиологии университета Пенсильвании Грег Данн убрал из уравнения научный поиск и сконцентрировался на визуальной составляющей. Он начал рисовать нейроны в стиле японской акварельной живописи суми-э (это вид монохромной живописи, в которой традиционно присутствуют только два цвета).

image
Столбчатая структура коры головного мозга. Золото, чернила, проявитель, слюда на алюминиевой панели

Данн сначала изучает реальное изображение нейронов, затем переносит основные очертания на бумагу и начинает создавать картину. Чтобы точнее передать особенности структур нейронных связей, художник использует напыление чернил на неабсорбирующую бумагу. При этом он больше импровизирует, а не срисовывает реальное изображение — добиться такой же витиеватой структуры крайне сложно, если просто копировать исходное изображение.

image
Корзинчатые и пирамидальные нейроны (у которых вверх ведет большой апикальный дендрит, есть один аксон, идущий вниз, и множество базальных дендритов) в двигательной коре головного мозга. Чернила на 22-каратном золоте

Если подуть на каплю чернил, узоры ее растекания по поверхности будут случайными, зависящими от воздушных завихрений, формы бумаги, микроскопических препятствий — ветвления на рисунках получаются такими же, как реальные ветвления нервных клеток.

image
Схема коры больших полушарий. Гравюра золотом на стали

В этой работе Данн перенес изображение на металл с помощью метода фотолитографии. Гравюру покрыли сусальным золотом. Техника позволяет вытравить копии клеточных микроструктур в тончайших золотых пластинах, каждая из которых отражает свет под определенным углом.

image

В основу этих работ легла техника нейровизуализации брэйнбоу (brain — мозг, rainbow — радуга), в которой используют флюоресцентные белки для окраски связанных друг с другом нейронов. На рисунках показана вариация брэйнбоу-окраски гиппокампа (ключевой структуры взрослого нейрогенеза) в четырех цветах.

image

Если взглянуть на гиппокам в различных научных работах, то можно сравнить уровни визуализации объектов. Здесь гиппокамп (слева) и целый мозг мыши (справа), окрашенные целиком. На изображении гиппокампа делящиеся клетки обозначены красным. Розовый — обонятельная луковица, фиолетовый — субвентрикулярная зона и ростральный миграционный путь, оранжевый — гиппокамп, желтый — поверхность мозжечка.

image

Большая часть работ Данна посвящена нейронам, однако он уделяет внимание и другим клеткам. На рисунке выше вы видите изображение спинного мозга.

image
Мозжечок. Золото, краски, эмаль на алюминизированной панели

В картинах используется не только золото, но и прозрачные краски, лаки, герметики, специальные вспениватели, металлические порошки, химически активные ингредиенты.

image

На этой картине изображена растущая кора головного мозга человека (на 15-й неделе беременности).

image

Этот рисунок показывает зрительную кору. Это лишь часть одной грандиозной картины художника, на которой изображены 750 000 нейронов и связи между ними.

Как видите, наука и искусство могут пересекаться в способах передачи информации. И если сухой язык академических статей мало привлекает людей, то для популяризации научных идей можно воспользоваться опытом художественной культуры.

Картины Грега Данна экспонируются в Институте Франклина в Филадельфии, а на сайте проекта можно посмотреть видеозаписи, которые показывают, как элементы выглядят под разными подсветками.

Автор:

Нейроискусство: зачем создают картины из нейронов <noindex><noindex><noindex><noindex><noindex><a href="http://www.braintools.ru" class="getmore" rel="nofollow" rel="nofollow" rel="nofollow" rel="nofollow" rel="nofollow">мозга</a></noindex></noindex></noindex></noindex></noindex> / Блог компании Mail.Ru Group / Geektimes

font-face{font-family:'Fira Sans';font-style:normal;font-weight:500;src:url(/fonts/0/FiraSans/firaSans-medium.eot);src:local("Fira Sans Medium"),local("FiraSans-Medium"),url(/fonts/0/FiraSans/firaSans-medium.eot?#iefix) format("embedded-opentype"),url(/fonts/0/FiraSans/firaSans-medium.woff2) format("woff2"),url(/fonts/0/FiraSans/firaSans-medium.woff) format("woff"),url(/fonts/0/FiraSans/firaSans-medium.ttf) format("truetype")}

/* Font Face Observer v2.0.13 - © Bram Stein. License: BSD-3-Clause */(function(){'use strict';var f,g=[];function l(a){g.push(a);1==g.length&&f()}function m(){for(;g.length;)g[0](),g.shift()}f=function(){setTimeout(m)};function n(a){this.a=p;this.b=void 0;this.f=[];var b=this;try{a(function(a){q(b,a)},function(a){r(b,a)})}catch(c){r(b,c)}}var p=2;function t(a){return new n(function(b,c){c(a)})}function u(a){return new n(function(b){b(a)})}function q(a,b){if(a.a==p){if(b==a)throw new TypeError;var c=!1;try{var d=b&&b.then;if(null!=b&&"object"==typeof b&&"function"==typeof d){d.call(b,function(b){c||q(a,b);c=!0},function(b){c||r(a,b);c=!0});return}}catch(e){c||r(a,e);return}a.a=0;a.b=b;v(a)}}
function r(a,b){if(a.a==p){if(b==a)throw new TypeError;a.a=1;a.b=b;v(a)}}function v(a){l(function(){if(a.a!=p)for(;a.f.length;){var b=a.f.shift(),c=b[0],d=b[1],e=b[2],b=b[3];try{0==a.a?"function"==typeof c?e(c.call(void 0,a.b)):e(a.b):1==a.a&&("function"==typeof d?e(d.call(void 0,a.b)):b(a.b))}catch(h){b(h)}}})}n.prototype.g=function(a){return this.c(void 0,a)};n.prototype.c=function(a,b){var c=this;return new n(function(d,e){c.f.push([a,b,d,e]);v(c)})};
function w(a){return new n(function(b,c){function d(c){return function(d){h[c]=d;e+=1;e==a.length&&b(h)}}var e=0,h=[];0==a.length&&b(h);for(var k=0;k<a.length;k+=1)u(a[k]).c(d(k),c)})}function x(a){return new n(function(b,c){for(var d=0;dparseInt(a[1],10)}else C=!1;return C}function J(){null===F&&(F=!!document.fonts);return F}
function K(){if(null===E){var a=document.createElement("div");try{a.style.font="condensed 100px sans-serif"}catch(b){}E=""!==a.style.font}return E}function L(a,b){return[a.style,a.weight,K()?a.stretch:"","100px",b].join(" ")}
A.prototype.load=function(a,b){var c=this,k=a||"BESbswy",q=0,D=b||3E3,H=(new Date).getTime();return new Promise(function(a,b){if(J()&&!G()){var M=new Promise(function(a,b){function e(){(new Date).getTime()-H>=D?b():document.fonts.load(L(c,'"'+c.family+'"'),k).then(function(c){1parseInt(b[1],10)||536===parseInt(b[1],10)&&11>=parseInt(b[2],10))),b=B&&(f==v&&g==v&&h==v||f==w&&g==w&&h==w||f==x&&g==x&&h==x)),b=!b;b&&(d.parentNode&&d.parentNode.removeChild(d),clearTimeout(q),a(c))}function I(){if((new Date).getTime()-H>=D)d.parentNode&&d.parentNode.removeChild(d),b(c);else{var a=document.hidden;if(!0===a||void 0===a)f=e.a.offsetWidth,
g=n.a.offsetWidth,h=p.a.offsetWidth,u();q=setTimeout(I,50)}}var e=new r(k),n=new r(k),p=new r(k),f=-1,g=-1,h=-1,v=-1,w=-1,x=-1,d=document.createElement("div");d.dir="ltr";t(e,L(c,"sans-serif"));t(n,L(c,"serif"));t(p,L(c,"monospace"));d.appendChild(e.a);d.appendChild(n.a);d.appendChild(p.a);document.body.appendChild(d);v=e.a.offsetWidth;w=n.a.offsetWidth;x=p.a.offsetWidth;I();z(e,function(a){f=a;u()});t(e,L(c,'"'+c.family+'",sans-serif'));z(n,function(a){g=a;u()});t(n,L(c,'"'+c.family+'",serif'));
z(p,function(a){h=a;u()});t(p,L(c,'"'+c.family+'",monospace'))})})};"object"===typeof module?module.exports=A:(window.FontFaceObserver=A,window.FontFaceObserver.prototype.load=A.prototype.load);}());

(function( w ){
if( w.document.documentElement.className.indexOf( "fonts-loaded" ) > -1 ){ return; }

var html = document.documentElement;
var FS500 = new w.FontFaceObserver("Fira Sans", { weight: 500 });

FS500.load().then(function() {
html.classList.add('fonts-loaded');
sessionStorage.fontsLoaded = true;
console.log('FS500-loaded');
}).catch(function () {
sessionStorage.fontsLoaded = false;
console.log('FS500-unloaded');
});

if (sessionStorage.fontsLoaded) {
html.classList.add('fonts-loaded');
}
}(this));

var N = 5; var ar_duo1 = Math.floor(Math.random()*N+1);

if (typeof adbl == 'undefined'){ var adbl = 'yes';}

var user_type = "guest";

var page_type = "publish_corp";

(function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){
(i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o),
m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m)
})(window,document,'script','//www.google-analytics.com/analytics.js','ga');

ga('create', 'UA-726094-21', 'auto');
ga('create', 'UA-726094-24', 'auto', {'name': 'HGM'});

ga('require', 'displayfeatures');
ga('set', 'dimension1', user_type); // user type - guest/readonly/habrauser
ga('set', 'dimension2', adbl);

ga('set', 'dimension3', page_type);

// аккаунт компании
ga('create', 'UA-16546458-10', 'auto', { 'name': 'company' } );

ga('company.send', 'pageview'); // Send page view for new tracker.

(function() {
var win = window;
var removeUtms = function(){
var location = win.location;
if (location.search.indexOf('utm_') != -1 && history.replaceState) {
history.replaceState({}, '', window.location.toString().replace(/(&|?)utm([_a-z0-9=-]+)/g, ""));
}
};
ga('send', 'pageview', { 'hitCallback': removeUtms });
})();

ga('HGM.set', 'dimension1', user_type);
ga('HGM.set', 'dimension2', "geektimes");
ga('HGM.send', 'pageview');

var adcm_config ={
id:1034,
platformId: 34,

tags: ['hub_popular_science', 'hub_brain', 'hub_biotech', 'g_science'],
init: function () {
window.adcm.call();
}
};

company_banner

Нейроискусство: зачем создают картины из нейронов мозга

    image

    Искусство и наука редко пересекаются. Когда это происходит и прикладное исследование, понятное лишь специалистам, обогащается визуальными образами, наука получает больше внимания обывателей. Сравните сами: исследования мозга по всему миру ведутся каждый день, но графики, диаграммы и рентгеновские снимки не вызывают у нас сильные эмоции. Однако, как только появляются красочные рисунки, иллюстрирующие воздействие на мозг, новость получает большой отклик. Вне контекста научных открытий нам просто нравится смотреть на работу внутренних органов, особенно интересно следить за функционированием полушарий, отвечающих за мышление.

    Картография мозга

    image
    Коннектом мозга мыши

    Ученые из Allen Institute for Brain Science в Сиэтле создали карту, которая детально отображает взаимосвязи между клетками мозга мыши. До создания такого рода картин не додумался бы ни один художник — исследователи вводили флуоресцентный вирус зеленого цвета в определенную зону мозга живой мыши. Вирус заражал нейроны вблизи места инъекции, и через три недели распространялся по всему мозгу. В результате карта взаимосвязей, происходящих в одной из областей мозга, отображалась в виде зеленой флуоресцентной сетки зараженных нейронов.

    image

    Даже «обычные» карты мозга впечатляют. Ученые из Университета штата Калифорния в Беркли разработали интерактивную карту, которая показывает, где хранятся значения определенных слов, а также как связаны слова и их значения.

    image

    Самую крупную в мире трехмерную карту нейронных сетей коры головного мозга опубликовали нейробиологи из Института Аллена, Гарвардской медицинской школы и NERF (исследовательского проекта в сфере нейроэлектроники). Разработка карты заняла более десяти лет: исследователи проанализировали колоссальные массивы данных по мозговой активности, и это позволило установить взаимосвязь между структурой и функциями мозга.

    Чтобы создать карту мозга мыши, на экран перед их глазами выводили горизонтальные и вертикальные линии — нейроны реагировали на эти визуальные сигналы. Затем были сделаны ультратонкие срезы мозга. Это позволило получить многочисленные изображения нейронов и синапсов, которые были использованы в создании 3D-модели.

    Мозг как самая главная загадка

    image

    До сих пор не существует полной карты человеческого мозга. Есть несколько подходов к решению этой задачи. Один из способов заключается в расшифровке пути, по которым электрические сигналы путешествуют между нейронами, когда мозг выполняет определенные функции. Проблема в том, что каждый ломтик толщиной пятьдесят миллиардных долей метра приходится тщательно фотографировать с помощью электронного микроскопа, а затем программно пытаться восстановить связи между нейронами поштучно.

    Процесс занимает очень много времени, но есть способы ускорить его. Например, можно использовать различные краски, позволяющие помечать цветом разные нейроны и связи, чтобы их было лучше видно. В проекте EyeWire любому пользователю в формате игры предлагают раскрасить нейронные связи на картинке с реальными нейронами сетчатки глаза, снятые электронным микроскопом. Вот так наука добивается прогресса через геймификацию.

    Холст и краски нейронных связей

    image

    Выпускник факультета нейробиологии университета Пенсильвании Грег Данн убрал из уравнения научный поиск и сконцентрировался на визуальной составляющей. Он начал рисовать нейроны в стиле японской акварельной живописи суми-э (это вид монохромной живописи, в которой традиционно присутствуют только два цвета).

    image
    Столбчатая структура коры головного мозга. Золото, чернила, проявитель, слюда на алюминиевой панели

    Данн сначала изучает реальное изображение нейронов, затем переносит основные очертания на бумагу и начинает создавать картину. Чтобы точнее передать особенности структур нейронных связей, художник использует напыление чернил на неабсорбирующую бумагу. При этом он больше импровизирует, а не срисовывает реальное изображение — добиться такой же витиеватой структуры крайне сложно, если просто копировать исходное изображение.

    image
    Корзинчатые и пирамидальные нейроны (у которых вверх ведет большой апикальный дендрит, есть один аксон, идущий вниз, и множество базальных дендритов) в двигательной коре головного мозга. Чернила на 22-каратном золоте

    Если подуть на каплю чернил, узоры ее растекания по поверхности будут случайными, зависящими от воздушных завихрений, формы бумаги, микроскопических препятствий — ветвления на рисунках получаются такими же, как реальные ветвления нервных клеток.

    image
    Схема коры больших полушарий. Гравюра золотом на стали

    В этой работе Данн перенес изображение на металл с помощью метода фотолитографии. Гравюру покрыли сусальным золотом. Техника позволяет вытравить копии клеточных микроструктур в тончайших золотых пластинах, каждая из которых отражает свет под определенным углом.

    image

    В основу этих работ легла техника нейровизуализации брэйнбоу (brain — мозг, rainbow — радуга), в которой используют флюоресцентные белки для окраски связанных друг с другом нейронов. На рисунках показана вариация брэйнбоу-окраски гиппокампа (ключевой структуры взрослого нейрогенеза) в четырех цветах.

    image

    Если взглянуть на гиппокам в различных научных работах, то можно сравнить уровни визуализации объектов. Здесь гиппокамп (слева) и целый мозг мыши (справа), окрашенные целиком. На изображении гиппокампа делящиеся клетки обозначены красным. Розовый — обонятельная луковица, фиолетовый — субвентрикулярная зона и ростральный миграционный путь, оранжевый — гиппокамп, желтый — поверхность мозжечка.

    image

    Большая часть работ Данна посвящена нейронам, однако он уделяет внимание и другим клеткам. На рисунке выше вы видите изображение спинного мозга.

    image
    Мозжечок. Золото, краски, эмаль на алюминизированной панели

    В картинах используется не только золото, но и прозрачные краски, лаки, герметики, специальные вспениватели, металлические порошки, химически активные ингредиенты.

    image

    На этой картине изображена растущая кора головного мозга человека (на 15-й неделе беременности).

    image

    Этот рисунок показывает зрительную кору. Это лишь часть одной грандиозной картины художника, на которой изображены 750 000 нейронов и связи между ними.

    Как видите, наука и искусство могут пересекаться в способах передачи информации. И если сухой язык академических статей мало привлекает людей, то для популяризации научных идей можно воспользоваться опытом художественной культуры.

    Картины Грега Данна экспонируются в Институте Франклина в Филадельфии, а на сайте проекта можно посмотреть видеозаписи, которые показывают, как элементы выглядят под разными подсветками.

    !function(e){function t(t,n){if(!(n in e)){for(var r,a=e.document,i=a.scripts,o=i.length;o--;)if(-1!==i[o].src.indexOf(t)){r=i[o];break}if(!r){r=a.createElement("script"),r.type="text/javascript",r.async=!0,r.defer=!0,r.src=t,r.charset="UTF-8";;var d=function(){var e=a.getElementsByTagName("script")[0];e.parentNode.insertBefore(r,e)};"[object Opera]"==e.opera?a.addEventListener?a.addEventListener("DOMContentLoaded",d,!1):e.attachEvent("onload",d):d()} } }t("//top-fwz1.mail.ru/js/code.js","_tmr"),t("//mediator.imgsmail.ru/2/mpf-mediator.min.js","_mediator")}(window);

    Метки:

    • +21


    • 5,7k


    • 6

    Нейроискусство: зачем создают картины из нейронов мозга

    Mail.Ru Group
    193,79

    Строим Интернет

    Поделиться публикацией

    Похожие публикации

    Комментарии 6

    • 17 августа 2017 в 00:40

      0

      каждый ломтик толщиной пятьдесят миллиардных долей метра приходится тщательно фотографировать с помощью электронного микроскопа, а затем программно пытаться восстановить связи между нейронами поштучно.

      Интересно, а что что мешает сделать устройство, которое бы срезало лазером очень тонкий поверхностный слой, затем водило бы над срезом электронным микроскопом (а софт для сшивания множества изображений в одно уже существует)?
      Наибольшая сложность тут состоит в определении соответствий элементов между слоями, но при крайне маленькой толщине слоя — не думаю, что это слишком большая проблема.
      Если есть кто знакомый с темой — можете рассказать поподробнее?

      • 17 августа 2017 в 09:05

        0

        Есть и такое. Слайсером был порезан мозг на тонкие лоскуты, которые были сфотографированы электронным микроскопом, а потом программно все это сшили. Не помню как назывался проект. И 3D модель этого мозга есть, содержащая полный коннектом.

        • 17 августа 2017 в 23:24

          0

          Я имел в виду даже не тонкие лоскуты, а немного другое: когда лазер в каждый проход испаряет очень-очень тонкий слой с поверхности (минимально возможной толщины, в идеале — в несколько молекул), электронный микроскоп сканирует открывшийся срез, лазер испаряет ещё небольшой слой и т.д.

          Насколько я понимаю, испарить минимально тонкий слой куда проще, чем отделить его от основной замороженной массы, перенести куда-то и уже там сфотографировать.

      • 17 августа 2017 в 16:15

        0

        Очень крутая, исследовательская работа, мне нравиться, респектую автору!

        • 17 августа 2017 в 16:29

          0

          Завораживающее действие, мозг изучающий сам себя

          • 17 августа 2017 в 18:00

            0

            Я думал, из за чего роботы уничтожат людей… Оказывается из за искусства!

            Только полноправные пользователи могут оставлять комментарии. Войдите, пожалуйста.

            Самое читаемое

            // global vars
            var g_base_url = 'geektimes.ru';
            var g_show_xpanel = false;
            var g_base_fullurl = 'https://geektimes.ru/';
            var g_is_guest = false;

            MathJax.Hub.Config({
            showProcessingMessages: false,
            showMathMenu: true,
            tex2jax: {
            inlineMath: [['$inline$','$inline$']],
            displayMath: [['$$display$$','$$display$$']],
            processEscapes: true
            },
            MathMenu: {
            showRenderer: true,
            showContext: true
            }
            });

            MathJax.Extension.Img2jax = {
            PreProcess: function (element) {
            var hasMath = false;
            var images = element.querySelectorAll('[data-tex]');
            for (var i = images.length - 1; i >= 0; i--) {
            var img = images[i];
            var tex = img.alt.replace(/(rn|n|r)/gm, " ");
            if (tex && tex[0] === '$'){
            var script = document.createElement("script"); script.type = "math/tex";
            hasMath = true;
            if (img.getAttribute('data-tex') == "display"){script.type += ";mode=display"}
            MathJax.HTML.setScript(script, tex.substring(1,tex.length-1));
            img.parentNode.replaceChild(script,img);
            }
            }
            }
            };

            MathJax.Hub.Register.PreProcessor(["PreProcess", MathJax.Extension.Img2jax]);

            $(document).ready( function(){
            window.tmidLogin = function(){ return false; };
            if( $.cookie('tmid_no_check') == undefined ) {
            var expire = new Date();
            expire.setMinutes(expire.getMinutes() + 10 );
            $.cookie('tmid_no_check', 1, { expires: expire } );
            $.getScript("https://id.tmtm.ru/checklogin/", function(){
            if( window.tmidLogin() ) {
            var href = $('#login').attr('href')+'?checklogin=true';
            if( href !== undefined ) { window.location.href = href; }
            }
            });
            }
            });

            (function (d, w, c) {
            (w[c] = w[c] || []).push(function() {
            try {
            if (typeof (_yaparams) != 'undefined') {
            w.yaCounter26722401 = new Ya.Metrika({
            id: 26722401,
            clickmap: true,
            trackLinks: true,
            accurateTrackBounce: true,
            webvisor: true,
            params: _yaparams
            });
            } else {
            w.yaCounter26722401 = new Ya.Metrika({
            id: 26722401,
            clickmap: true,
            trackLinks: true,
            accurateTrackBounce: true,
            webvisor: true
            });
            }
            } catch(e) { }
            });

            var n = d.getElementsByTagName("script")[0],
            s = d.createElement("script"),
            f = function () { n.parentNode.insertBefore(s, n); };
            s.type = "text/javascript";
            s.async = true;
            s.src = "https://mc.yandex.ru/metrika/watch.js";

            if (w.opera == "[object Opera]") {
            d.addEventListener("DOMContentLoaded", f, false);
            } else { f(); }
            })(document, window, "yandex_metrika_callbacks");

            Источник

            * - обязательные к заполнению поля


            https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js