@font-face{font-family:'Fira Sans';font-style:normal;font-weight:400;src:url(/fonts/0/FiraSans/hg-FiraSans-Regular.eot);src:local("Fira Sans"),local("FiraSans-Regular"),url(/fonts/0/FiraSans/hg-FiraSans-Regular.eot?#iefix) format("embedded-opentype"),url(/fonts/0/FiraSans/hg-FiraSans-Regular.woff2) format("woff2"),url(/fonts/0/FiraSans/hg-FiraSans-Regular.woff) format("woff"),url(/fonts/0/FiraSans/hg-FiraSans-Regular.ttf) format("truetype")}@font-face{font-family:'Fira Sans';font-style:normal;font-weight:500;src:url(/fonts/0/FiraSans/hg-FiraSans-Medium.eot);src:local("Fira Sans Medium"),local("FiraSans-Medium"),url(/fonts/0/FiraSans/hg-FiraSans-Medium.eot?#iefix) format("embedded-opentype"),url(/fonts/0/FiraSans/hg-FiraSans-Medium.woff2) format("woff2"),url(/fonts/0/FiraSans/hg-FiraSans-Medium.woff) format("woff"),url(/fonts/0/FiraSans/hg-FiraSans-Medium.ttf) format("truetype")}
(function(){'use strict';var f,g=[];function l(a){g.push(a);1==g.length&&f()}function m(){for(;g.length;)g[0](),g.shift()}f=function(){setTimeout(m)};function n(a){this.a=p;this.b=void 0;this.f=[];var b=this;try{a(function(a){q(b,a)},function(a){r(b,a)})}catch(c){r(b,c)}}var p=2;function t(a){return new n(function(b,c){c(a)})}function u(a){return new n(function(b){b(a)})}function q(a,b){if(a.a==p){if(b==a)throw new TypeError;var c=!1;try{var d=b&&b.then;if(null!=b&&"object"==typeof b&&"function"==typeof d){d.call(b,function(b){c||q(a,b);c=!0},function(b){c||r(a,b);c=!0});return}}catch(e){c||r(a,e);return}a.a=0;a.b=b;v(a)}}
function r(a,b){if(a.a==p){if(b==a)throw new TypeError;a.a=1;a.b=b;v(a)}}function v(a){l(function(){if(a.a!=p)for(;a.f.length;){var b=a.f.shift(),c=b[0],d=b[1],e=b[2],b=b[3];try{0==a.a?"function"==typeof c?e(c.call(void 0,a.b)):e(a.b):1==a.a&&("function"==typeof d?e(d.call(void 0,a.b)):b(a.b))}catch(h){b(h)}}})}n.prototype.g=function(a){return this.c(void 0,a)};n.prototype.c=function(a,b){var c=this;return new n(function(d,e){c.f.push([a,b,d,e]);v(c)})};
function w(a){return new n(function(b,c){function d(c){return function(d){h[c]=d;e+=1;e==a.length&&b(h)}}var e=0,h=[];0==a.length&&b(h);for(var k=0;k<a.length;k+=1)u(a[k]).c(d(k),c)})}function x(a){return new n(function(b,c){for(var d=0;d=y?b():document.fonts.load(I(c,'"'+c.family+'"'),k).then(function(c){1parseInt(b[1],10)||536===parseInt(b[1],10)&&11>=parseInt(b[2],10))),b=B&&(f==t&&g==t&&h==t||f==u&&g==u&&h==u||f==v&&g==v&&h==v)),b=!b;b&&(null!==d.parentNode&&d.parentNode.removeChild(d),clearTimeout(G),a(c))}function F(){if((new Date).getTime()-E>=y)null!==d.parentNode&&d.parentNode.removeChild(d),b(c);else{var a=document.hidden;if(!0===a||
void 0===a)f=e.a.offsetWidth,g=n.a.offsetWidth,h=p.a.offsetWidth,r();G=setTimeout(F,50)}}var e=new q(k),n=new q(k),p=new q(k),f=-1,g=-1,h=-1,t=-1,u=-1,v=-1,d=document.createElement("div"),G=0;d.dir="ltr";w(e,I(c,"sans-serif"));w(n,I(c,"serif"));w(p,I(c,"monospace"));d.appendChild(e.a);d.appendChild(n.a);d.appendChild(p.a);document.body.appendChild(d);t=e.a.offsetWidth;u=n.a.offsetWidth;v=p.a.offsetWidth;F();z(e,function(a){f=a;r()});w(e,I(c,'"'+c.family+'",sans-serif'));z(n,function(a){g=a;r()});
w(n,I(c,'"'+c.family+'",serif'));z(p,function(a){h=a;r()});w(p,I(c,'"'+c.family+'",monospace'))})})};"undefined"!==typeof module?module.exports=A:(window.FontFaceObserver=A,window.FontFaceObserver.prototype.load=A.prototype.load);}());
(function( w ){
if( w.document.documentElement.className.indexOf( "fonts-loaded" ) > -1 ){ return; }
var html = document.documentElement;
var FS400 = new w.FontFaceObserver("Fira Sans", { weight: 400 });
var FS500 = new w.FontFaceObserver("Fira Sans", { weight: 500 });
Promise.all([ FS400.check, FS500.check ]).then(function() {
html.classList.add('fonts-loaded');
sessionStorage.fontsLoaded = true;
console.log('fonts-loaded');
}).catch(function () {
sessionStorage.fontsLoaded = false;
console.log('fonts-unloaded');
});
if (sessionStorage.fontsLoaded) {
html.classList.add('fonts-loaded');
}
}(this));
if (typeof adriver == 'undefined'){ var adb1 = 'yes';}
var user_type = 'guest';
var page_type = "publish_corp";
(function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){
(i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o),
m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m)
})(window,document,'script','//www.google-analytics.com/analytics.js','ga');
ga('create', 'UA-726094-1', 'auto');
ga('create', 'UA-726094-24', 'auto', {'name': 'HGM'});
ga('require', 'displayfeatures');
ga('set', 'dimension1', user_type); // user type - guest/readonly/habrauser
ga('set', 'dimension4', adb1);
ga('set', 'dimension5', page_type);
(function() {
var win = window;
var removeUtms = function(){
var location = win.location;
if (location.search.indexOf('utm_') != -1 && history.replaceState) {
history.replaceState({}, '', window.location.toString().replace(/(&|?)utm([_a-z0-9=]+)/g, ""));
}
};
ga('send', 'pageview', { 'hitCallback': removeUtms });
})();
ga('HGM.set', 'dimension1', user_type);
ga('HGM.set', 'dimension2', "habrahabr");
ga('HGM.send', 'pageview');
var adcm_config ={
id:1034,
platformId: 34,
tags: ['hub_bigdata', 'hub_machine_learning', 'hub_algorithms', 'g_programming', 'g_data_management', 'g_machine_learning_and_artificial_intelligence'],
init: function () {
window.adcm.call();
}
};
Отчёт со Sberbank Data Science Day: решения, победители, интервью

Data Science Day открылся видео-приветствием Германа Грефа.
Затем пришедших data scientists со сцены поприветствовал Заместитель Председателя Правления Сбербанка Вадим Кулик.



Профессор Университета Амстердама Маартин де Рийке на примере задач информационного поиска рассказал про бурно развивающуюся парадигму Reinforcement Learning, являющуюся предвестником искусственного интеллекта в его широком понимании. Уже сейчас в банке начинаются эксперименты с данным подходом при решении прикладных задач (рекомендательные системы, персональные предложения клиентам).



На основе полученных данных было необходимо выявить одну бизнес-задачу банка и разработать для неё решение. Технологический стек решений и тематика задач оставались на усмотрение участников.
По результатам онлайн-этапа было собрано 35 заявок от различных команд и стартапов в области дата-сайнс, среди которых были отобраны пять лучших команд. На Data Science Day состоялся финал конкурса в виде питч-сессий по 7 минут каждая. Победителей выбрало жюри, состоящее из топ-менеджеров Сбербанка и представителей компаний-партнёров.

Ниже мы опишем краткие тезисы проектов команд со ссылками на презентации.


Модель включала в себя индексы роста благосостояния и финансовой стабильности (см. рисунок), т.е. устойчивости клиента к возможным внезапным сокращениям доходов. На основании прогноза постоянных и переменных расходов и доходов за месяц, а также значений индексов и анализа их волатильности определялись клиенты, которым окажутся полезными те или иные рекомендации.


Имея хороший алгоритм прогнозирования трат клиентов, например, в тех или иных категориях, можно предугадывать некоторые факты из жизни клиента (например, факт поездки за рубеж). Методом скользящего окна производится анализ покупок клиента и поиск закономерностей в его поведении. В случае пошагового анализа вероятность покупки увеличивается перед самим событием (см. рисунок). Данное решение можно использовать для увеличения взаимодействия с клиентом с помощью персональных предложений.








$(document).ready(function() {
t341_showCaptions('12507457');
t341_checkSize('12507457');
$('.t341').bind('displayChanged',function(){
t341_showCaptions('12507457');
t341_checkSize('12507457');
});
$("#t-carousel12507457 .t-carousel__slides").swipe( {
swipeLeft:function(event, direction, distance, duration) {
$(this).parent().carousel('next');
},
swipeRight: function(event, direction, distance, duration) {
$(this).parent().carousel('prev');
},
threshold: 50,
preventDefaultEvents: false,
allowPageScroll: "none"
});
});
$(window).resize(function() {
t341_checkSize('12507457');
});


$(document).ready(function(){
t121_setHeight("12499805");
});
$(window).load(function(){
t121_setHeight("12499805");
});
$(window).resize(function(){
t121_setHeight("12499805");
});
$('.t121').bind('displayChanged',function(){
t121_setHeight("12499805");
});
Структура решения, как обычно, состояла в применении достаточно стандартных подходов:
- Извлечение базовых признаков. Для извлечения базовых признаков используем различные меры за последние пять месяцев (объём трат, количество трат и std трат) в различных измерениях (месяц, пользователь, mcc; месяц, пользователь; месяц, mcc).
- Построение линейных моделей для каждого пользователя. У каждого пользователя выделялся уникальный характер трат (регулярность, количество), затем для каждого из них строилась сильно регуляризованная ridge-регрессия на базовых признаках;
- Построение линейных моделей для каждого MCC-кода. Поскольку MCC-кодов было не так много, как пользователей, однако, структура трат по ним достаточно сложна для описания одной общей моделью. При этом можно заметить, что траты по некоторым кодам связаны друг с другом, поэтому помимо базовых признаков в модель добавлялись траты за предыдущий месяц по каждому из MCC-кодов;
- Объединение всех признаков в XGBoost. В итоговую модель были включены как базовые признаки, так и предсказания, полученные с помощью пользовательских/MCC-регрессий.
- Лёгкий постпроцессинг решений. Приведение решений к "адекватному" виду (например, если предсказание получилось меньше нуля, то в качестве ответа выдаём ноль).
$(document).ready(function(){
t121_setHeight("12499874");
});
$(window).load(function(){
t121_setHeight("12499874");
});
$(window).resize(function(){
t121_setHeight("12499874");
});
$('.t121').bind('displayChanged',function(){
t121_setHeight("12499874");
});
Задача выглядела достаточно классической, поэтому интуиция подсказывала, что наиболее оправданным является применение неглубоких деревьев с малым количеством признаков на агрегатах (на сырых транзакционных данных модели не работают). Базовые признаки были связаны со стандартными производными от трат (сумма, количество, min/max), параметры xgboost: eta = 0.02, depth = 3, subsample = 0.6. Ключевыми признаками также являлись "мужские" и "женские" траты в разрезах по различным MCC-категориям и типам транзакций и другие более специфические (например, объединение MCC-кодов в пары: если после покупки в магазине женской одежды идёт покупка в магазине мужской, то это снижает вероятность того, что данный клиент - женщина). Сверху также навешивался стекинг наивного байеса как признака, в котором траты в MCC-кодах использовались как простой bag of words. Более подробно про решение задачи A - в презентации (ссылка) и видео-выступлении (ссылка).
$(document).ready(function(){
t121_setHeight("12499993");
});
$(window).load(function(){
t121_setHeight("12499993");
});
$(window).resize(function(){
t121_setHeight("12499993");
});
$('.t121').bind('displayChanged',function(){
t121_setHeight("12499993");
});
Data Science Journey – это не просто разовое мероприятие в области анализа данных, машинного обучения и искусственного интеллекта, а начало новой и прочной традиции: такие «Путешествия» мы планируем проводить на регулярной основе. Ждите наших новых мероприятий!
$(document).ready(function() {
t341_showCaptions('12501654');
t341_checkSize('12501654');
$('.t341').bind('displayChanged',function(){
t341_showCaptions('12501654');
t341_checkSize('12501654');
});
$("#t-carousel12501654 .t-carousel__slides").swipe( {
swipeLeft:function(event, direction, distance, duration) {
$(this).parent().carousel('next');
},
swipeRight: function(event, direction, distance, duration) {
$(this).parent().carousel('prev');
},
threshold: 50,
preventDefaultEvents: false,
allowPageScroll: "none"
});
});
$(window).resize(function() {
t341_checkSize('12501654');
});
Только зарегистрированные пользователи могут оставлять комментарии. Войдите, пожалуйста.
$(document).ready( function(){
window.tmidLogin = function(){ return false; };
if( $.cookie('tmid_no_check') === undefined ) {
var expire = new Date();
expire.setMinutes(expire.getMinutes() + 10 );
$.cookie('tmid_no_check', 1, { expires: expire } );
$.getScript("https://id.tmtm.ru/checklogin/", function(){
if( window.tmidLogin() ) {
var href = $('#login').attr('href');
if( href !== undefined ) {
window.location.href = href;
}
}
});
}
});
// global vars
var g_base_url = 'habrahabr.ru';
var g_show_xpanel = false;
var g_base_fullurl = 'https://habrahabr.ru/';
var g_is_guest = false;
var _paq = _paq || [];
_paq.push(['trackPageView']);
_paq.push(['enableLinkTracking']);
(function() {
var u="//stats.tmtm.ru/";
_paq.push(['setTrackerUrl', u+'piwik.php']);
_paq.push(['setSiteId', '5']);
var d=document, g=d.createElement('script'), s=d.getElementsByTagName('script')[0];
g.type='text/javascript'; g.async=true; g.defer=true; g.src=u+'piwik.js'; s.parentNode.insertBefore(g,s);
})();
gascrolldepth.init({
percentage: true,
PiwikGoal: true,
PiwikGoal20: 3,
PiwikGoal50: 15,
PiwikGoal70: 17,
PiwikGoal90: 19,
PiwikGoal100: 20
});
(function (d, w, c) {
(w[c] = w[c] || []).push(function() {
try {
if (typeof (_yaparams) != 'undefined') {
w.yaCounter24049213 = new Ya.Metrika({id:24049213,
webvisor:true,
clickmap:true,
trackLinks:true,
accurateTrackBounce:true,
params:_yaparams});
} else {
w.yaCounter24049213 = new Ya.Metrika({id:24049213,
webvisor:true,
clickmap:true,
trackLinks:true,
accurateTrackBounce:true});
}
} catch(e) { }
});
var n = d.getElementsByTagName("script")[0],
s = d.createElement("script"),
f = function () { n.parentNode.insertBefore(s, n); };
s.type = "text/javascript";
s.async = true;
s.src = (d.location.protocol == "https:" ? "https:" : "http:") + "//mc.yandex.ru/metrika/watch.js";
if (w.opera == "[object Opera]") {
d.addEventListener("DOMContentLoaded", f, false);
} else { f(); }
})(document, window, "yandex_metrika_callbacks");

function checkHeaderPos(){
var topToHubs = $('.megapost-cover').offset().top + $('.megapost-cover').outerHeight();
var sT = $(this).scrollTop();
if (sT > topToHubs) {
$('.t199__js__header, .t199_js__header').fadeIn();
} else {
$('.t199__js__header, .t199_js__header').fadeOut();
}
}
$(window).on('scroll', function() {
checkHeaderPos();
});
function drawguides(){
if($("#guides").length)$("#guides").remove();
$("body").append('
');
var g=$('#guides');
var ww=$(window).width();
var offset_left=parseInt((ww-1200)/2);
var col_space=20;
var col_width=100;
if(ww=960){
for(i=0;i<13;i++){
var x1=(i*col_width)+offset_left-col_space;
var x2=(i*col_width)+offset_left+col_space;
var n=i+1;
if(i!=0)g.append('
');
if(i!=12)g.append('
');
if(i!=12)g.append('
');
}
}
if(ww<960){
var x=parseInt(ww/2);
g.append('
');
}
var doit;
$(window).resize(function() {
if($("#guides").length){
clearTimeout(doit);
doit = setTimeout(drawguides, 300);
}
});
}
function showguides(){
if($("#guides").length){
$("#guides").remove();
$("#guidesmenubutton").css("display","none");
}else{
drawguides();
$("#guidesmenubutton").css("display","block");
}
}
Автор:
Комментарии (1)
ternaus
28 декабря 2016 в 21:17