Как работает стилус Galaxy Note

в 3:01, , рубрики: Galaxy Note, Galaxy Note 2, Железо, сенсорные экраны, Смартфоны и коммуникаторы, стилус, Электроника для начинающих, метки: , ,

Как работает стилус Galaxy Note.
С первого дня пользования меня очень интересовал вопрос — как же на обычном емкостном экране, которые воспринимает только определенную площадь прикосновения удалось добиться работы тонкого стилуса, да еще с кнопкой и несколькими степенями нажатия?
Как работает стилус Galaxy Note
В этой статье я попытаюсь ответить на этот вопрос, рассказав немного об интересных технических решениях, примененных в этом телефоне.

Для начала вспомним теорию.

Емкостный экран определяет точку касания по току утечки при заряде конденсатора, в роли одной обкладки которого выступает экран телефона а другой — тело человека. На обратную сторону стекла в вашем смартфоне нанесены тонкие линии из прозрачного проводящего материала(их можно увидеть, если посмотреть под определенным углом на экран при хорошем освещении).

Емкостный сенсор: мини-конденсаторы(в виде буквы Н) и проводники между ними.
Как работает стилус Galaxy Note

Контроллер сенсорного экрана много раз в секунду заряжает и разряжает эти конденсаторы ограниченным током, каждый раз замеряя емкость каждого из них, и сравнивая ее со стандартной емкостью, записанной в памяти. Как только вы прикасаетесь пальцем к стеклу, вы становитесь такой большой обкладкой конденсатора, которую можно зарядить.
Естественно, для этого потребуется энергия, за которой зорко следит контроллер. Как только он обнаруживает, что какая-либо ячейка начинает потреблять много энергии (много — это по сравнению с обычным потреблением, но даже для обычного светодиода это крохи), что при ограниченном токе оборачивает увеличением времени заряда — он понимает, что к стеклу чем-то прикоснулись.

На основании информации от нескольких конденсаторов можно вычислить по достаточно сложным формулам место и площадь касания. Или нескольких касаний, количество одновременно определяемых касаний ограничено только контроллером и размерами экрана(очень трудно вместить 20 пальцев на экране в 3").

Такая технология имеет ряд ограничений. По нескольким причинам, таких как невозможность расположить элементы достаточно плотно(уменьшается прозрачность), ограниченной проводимости стекла, и необходимости отсекать помехи от случайных касаний, наводок, грязи на экране и т.п. пришлось довольствоваться минимальной площадью касания 5х5 мм.
К тому же, объект, который касается экрана должен иметь достаточную собственную емкость, сравнимую с емкостью человеческого тела. Что мы получаем в итоге? Невозможность пользоваться в перчатках(большинство из них обладают достаточно большим сопротивлением, чтобы уменьшить ток утечки до минимума, который не определяется контроллером), необходимость в крупных стилусах, которые обязательно должны быть связаны гальванически с телом пользователя(поэтому большинство из них имеют металлический корпус).

Какие же системы ввода работают с стилусами, могут различать силу нажатия, и имеют отличную точность? Это электромагнитно-антенные системы, которые используются в подавляющем большинстве графических планшетов

Графический планшет Wacom со стилусом:
Как работает стилус Galaxy Note

Принцип их работы тоже не запредельно сложен — стилус передает на определенной частоте, а антенна внутри планшета принимает. Контроллер может узнать точное положение благодаря хитрой форме антенны, а информация о давлении на стилус передается частотой или кодовыми посылками.

Хитрая антенна внутри графического планшета:
Как работает стилус Galaxy Note

Точно такая же система реализована внутри Galaxy Note(как I, так и II). Сверху находится стекло, на обратной стороне которого — емкостный сенсор, под ним — экран, а под ним — приемно-передающая антенна для стилуса.
Вот, чтоб было понятнее — я нарисовал картинку.
Как работает стилус Galaxy Note

А вот и контроллер сенсорного экрана от Wacom(синий) который заведует всем этим хитрым хозяйством, и шлейф к антенне(зеленый):
Как работает стилус Galaxy Note

Однако, примерного описания технологии вовсе недостаточно для удовлетворения моего любопытства. Еще бы чуть-чуть, и я бы решился разобрать стилус, но нашел сайт товарища microsin-a, который уже сделал это. Фотографии разобранного стилуса принадлежат ему.
Вот как оно выглядит сбоку:
Как работает стилус Galaxy Note
Часть корпуса снята наждачной бумагой. Батареек нет, следовательно перо питается от экрана. Приемно-передающая катушка ближе:
Как работает стилус Galaxy Note
А вот уже без корпуса:
Как работает стилус Galaxy Note
И плата:
Как работает стилус Galaxy Note
Схема очень простая, в какой-то мере даже «топорная». Но красивая и без излишних усложнений.
Как работает стилус Galaxy Note
Простейший колебательный контур с изменяемой резонансной частотой. Частоту можно изменить либо изменением емкости(дополнительный конденсатор подключается через кнопку, и соответственно, реагирует на ее нажатие), либо через изменение индуктивности — за счет изменения расстояния между двумя частями сердечника, на котором намотана катушка.
Как работает стилус Galaxy Note
А расстояние изменялось из-за давления на кончик стилуса — оно передавалось на мягкую силиконовую прокладку, и приводило к изменении ее формы. а следовательно и зазора.
Да что я рассказываю, у меня фотка есть:
Как работает стилус Galaxy Note
Оно самое, 1 — кольцо-прокладка, 2 — вторая часть сердечника, 3 — наконечник.
Наконечник тоже состоит из двух частей — пластиковой опоры и фторопластового наконечника:
Как работает стилус Galaxy Note

Что интересно — стилусу с такой конструкцией не нужен экран как таковой, для определения касания — его достаточно поднести к экрану и нажать на кончик пальцем, и контроллер все равно зарегистрирует нажатие.
Если закрепить кончик стилуса скотчем — можно рисовать взмахами, не притрагиваясь к экрану.

Итак, давайте подытожим.
Как работает стилус Galaxy Note
Антенна-сетка, расположенная под экраном, генерирует импульсы с определенной частотой(судя по прикидкам — десятки килогерц), на картинке они обозначены как несущая частота — оранжевая стрелка. Эти импульсы принимает катушка индуктивности, расположенная в стилусе, которая входит в состав колебательного контура. Контур устроен таким образом, что после его «раскачки» он способен некоторое время колебаться сам, на своей резонансной частоте, постепенно тратя запасенную энергию на нагрев и излучение. Конечно, нагрев там минимальный, на доли градуса, как и излучение, которое ослабевает уже в нескольких сантиметрах. Но и энергии тоже тратится мало, над эффективностью наверняка поработали немало.
Колебательный контур, чья резонансная частота зависит от индуктивности катушки(которая, в свою очередь, зависит от положения наконечника), и от емкости конденсаторов, входящих в состав(она зависит от нажатия кнопки), излучает на этой частоте, которая принимается чем угодно той же антенной, и наводит в ней ток.
Как работает стилус Galaxy Note
Теперь в антенне телефона пульсирует ток со сложной формой, состоящий из двух частот — точной «передающей» и меняющейся в зависимости от состояния стилуса «приемной». Более того, в некоторых точках антенны напряженность приемного поля выше — там где стилус ближе всего к поверхности экрана. Контроллер определяет эту точку, находит ее центр(это и будет место прикосновения стилуса), потом фильтрует «передающую» частоту, и получает после обработки состояние стилуса — давление на перо и статус кнопки.
Правда, интересно? :)

Посмотреть все фотографии из статьи в оригинальном разрешении можно в Picasa-альбоме.

А подписаться на меня, чтоб не пропустить новые статьи, можно в моем профиле(кнопка «подписаться»)

Автор: vvzvlad

Источник

* - обязательные к заполнению поля


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js