Сохранить данные и веру в человечество: большая миграция кластера ElasticSearch

в 10:23, , рубрики: devops, elasticsearch, kibana, LXD, Блог компании Яндекс.Деньги, логи, Серверная оптимизация, системное администрирование

Сохранить данные и веру в человечество: большая миграция кластера ElasticSearch - 1

В этом материале я продолжаю делиться полевым опытом работы с системой сбора логов на базе Heka и ElasticSearch.

На этот раз рассказ пойдет про миграцию данных между двумя кластерами ElasticSearch 2.2 и 5.2.2, которая стоила немалых нервов лично мне. Как-никак, предстояло перевезти 24 миллиарда записей, не сломав уже работающую систему.

Прошлая статья закончилась на том, что система работает, логи поступают и складываются в кластер ElasticSearch, доступен их просмотр в реальном времени через Kibana. Но кластер изначально был собран со значительным запасом по памяти как раз на вырост.

Если обратиться к официальной документации ElasticSearch (далее просто ES), то в первую очередь вы увидите строгое предупреждение «Don't cross 32 gb». Превышение грозит проседанием производительности вплоть до моментов полной остановки, пока garbage collector выполняет пересборку в духе «stop the world». Рекомендация производителя по памяти на сервере: 32 ГБ под heap (xms/xmx) и еще 32 ГБ свободного места под кэш. Итого 64 ГБ физической памяти на одну дата-ноду.

Но что делать, если памяти больше? Официальный ответ все в той же документации – ставить несколько экземпляров ES на один хост. Но мне такой подход показался не совсем правильным, так как штатных средств для этого не предусмотрено. Дублировать init-скрипты – это прошлый век, поэтому более интересной выглядела виртуализация кластера с размещением нод в LXD-контейнерах.

LXD (Linux Container Daemon) – так называемый «контейнерный легковизор». В отличии от «тяжелых» гипервизоров не содержит эмуляции аппаратуры, что позволяет сократить накладные расходы на виртуализацию. К тому же имеет продвинутый REST API, гибкую настройку используемых ресурсов, возможности переноса контейнеров между хостами и другие возможности, более характерные для классических систем виртуализации.

Сохранить данные и веру в человечество: большая миграция кластера ElasticSearch - 2

Вот такая вырисовывалась структура будущего кластера.

К началу работ под рукой было следующее железо:

  • Четыре работающих дата-ноды ES в составе старого кластера: Intel Xeon 2x E5-2640 v3; 512 ГБ ОЗУ, 3x16 ТБ RAID-10.

  • Два новых пустых сервера аналогичной предыдущему пункту конфигурации.

По задумке, на каждом физическом сервере будет две дата-ноды ES, мастер-нода и клиентская нода. Кроме того, на сервере разместится контейнер-приёмник логов с установленными HAProxy и пулом Heka для обслуживания дата-нод этого физического сервера.

Подготовка нового кластера

В первую очередь нужно освободить одну из дата-нод – этот сервер сразу уходит в новый кластер. Нагрузка на оставшиеся три возрастет на 30%, но они справятся, что подтверждает статистика загрузки за последний месяц. Тем более это ненадолго. Далее привожу свою последовательность действий для штатного вывода дата-ноды из кластера.

Снимем с четвертой дата-ноды нагрузку, запретив размещение на ней новых индексов:

{
  "transient": {
    "cluster.routing.allocation.exclude._host": "log-data4"
  }
}

Теперь выключаем автоматическую ребалансировку кластера на время миграции, чтобы не создавать лишней нагрузки на оставшиеся дата-ноды:

{
    "transient": {
        "cluster.routing.rebalance.enable": "none"
    }
}

Собираем список индексов с освобождаемой дата-ноды, делим его на три равные части и запускаем перемещение шардов на оставшиеся дата-ноды следующим образом (по каждому индексу и шарду):

PUT _cluster/reroute

{
    "commands" : [ {
        "move" :
            {
              "index" : "service-log-2017.04.25", "shard" : 0,
              "from_node" : "log-data4", "to_node" : "log-data1"
            }
        }
}

Когда перенос завершится, выключаем освободившуюся ноду и не забываем вернуть ребалансировку обратно:

{
    "transient": {
        "cluster.routing.rebalance.enable": "all"
    }
}

Если позволяют сеть и нагрузка на кластер, то для ускорения процесса можно увеличить очередь одновременно перемещаемых шардов (по умолчанию это количество равно двум)

{
    "transient": {
        "cluster": {
            "routing": {
                "allocation": {
                    "cluster_concurrent_rebalance": "10"
                }
            }
        }
    }
}

Пока старый кластер постепенно приходит в себя, собираем на трёх имеющихся серверах новый на базе ElasticSearch 5.2.2, с отдельными LXD-контейнерами под каждую ноду. Дело это простое и хорошо описанное в документации, поэтому опущу подробности. Если что – спрашивайте в комментариях, расскажу детально.

В ходе настройки нового кластера я распределил память следующим образом:

  • Мастер-ноды: 4 ГБ

  • Клиентские ноды: 8 ГБ

  • Дата-ноды: 32 ГБ

  • XMS везде устанавливаем равным XMX.

Такое распределение родилось после осмысления документации, просмотра статистики работы старого кластера и применения здравого смысла.

Синхронизируем кластеры

Итак, у нас есть два кластера:

  1. Старый – три дата-ноды, каждая на железном сервере.

  2. Новый, с шестью дата-нодами в LXD контейнерах, по две на сервер.

Первое, что делаем, – включаем зеркалирование трафика в оба кластера. На приемных пулах Heka (за подробным описанием отсылаю к предыдущей статье цикла) добавляем ещё одну секцию Output для каждого обрабатываемого сервиса:

[Service1Output_Mirror]
type = "ElasticSearchOutput"
message_matcher = "Logger == 'money-service1''"
server = "http://newcluster.receiver:9200"
encoder = "Service1Encoder"
use_buffering = true

После этого трафик пойдет параллельно в оба кластера. Учитывая, что мы храним индексы с оперативными логами компонент не более 21 дня, на этом можно было бы и остановиться. Через 21 день в кластерах будут одинаковые данные, а старый можно отключить и разобрать. Но долго и скучно столько ждать. Поэтому переходим к последнему и самому интересному этапу – миграции данных между кластерами.

Перенос индексов между кластерами

Так как официальной процедуры миграции данных между кластерами ES на момент выполнения проекта не существует, а изобретать «костыли» не хочется – используем Logstash. В отличии от Heka он умеет не только писать данные в ES, но и читать их оттуда.

Судя по комментариям к прошлой статье, у многих сформировалось мнение, что я почему-то не люблю Logstash. Но ведь каждый инструмент предназначен для своих задач, и для миграции между кластерами именно Logstash подошёл как нельзя лучше.

На время миграции полезно увеличить размер буфера памяти под индексы с 10% по умолчанию до 40%, которые выбраны по среднему количеству свободной памяти на работающих дата-нодах ES. Также нужно выключить обновление индексов на каждой дата-ноде, для чего добавляем в конфигурацию дата-нод следующие параметры:

memory.index_buffer_size: 40%
index.refresh_interval: -1

По-умолчанию индекс обновляется каждую секунду и создает тем самым лишнюю нагрузку. Поэтому, пока в новый кластер никто из пользователей не смотрит, обновление можно отключить. Заодно я создал шаблон по умолчанию для нового кластера, который будет использоваться при формировании новых индексов:

{
    "default": {
        "order": 0,
        "template": "*",
        "settings": {
            "index": {
                "number_of_shards": "6",
                "number_of_replicas": "0"
            }
        }
    }
}

С помощью шаблона выключаем на время миграции репликацию, тем самым снизив нагрузку на дисковую систему.

Для Logstash получилась следующая конфигурация:

input {
    elasticsearch {
    hosts => [ "localhost:9200" ]
    index => "index_name"
    size => 5000
    docinfo => true
    query => '{ "query": { "match_all": {} }, "sort": [ "@timestamp" ] }'}
    }

output {
    elasticsearch { hosts => [ "log-new-data1:9200" ]
    index => "%{[@metadata][_index]}"
    document_type => "%{[@metadata][_type]}"
    document_id => "%{[@metadata][_id]}"}}
    }

В секции input описываем источник получения данных, указываем системе, что данные нужно забирать пачками (bulk) по 5000 записей, и выбираем все записи, отсортированные по timestamp.

В output нужно указать назначение для пересылки полученных данных. Обратите внимание на описания следующих полей, которые можно получить из старых индексов:

  • document_type – тип (mapping) документа, который лучше указать при переезде, чтобы имена создаваемых mappings в новом кластере совпадали с именами в старом – они используются в сохранённых запросах и дашбордах.

  • document_id – внутренний идентификатор записи в индексе, который представляет собой уникальный 20-символьный хэш. С его явной передачей решаются две задачи: во-первых, облегчаем нагрузку на новый кластер не требуя генерировать id для каждой из миллиардов записей, и во-вторых, в случае прерывания процесса нет необходимости удалять недокачанный индекс, можно просто запустить процесс заново, и ES проигнорирует записи с совпадающим id.

Параметры запуска Logstash:

/usr/share/logstash/bin/logstash -f /etc/logstash/conf.d/migrate.conf --pipeline.workers 8

Ключевыми параметрами, влияющими на скорость миграции, являются размер пачек, которые Logstash будет отправлять в ES, и количество одновременно запускаемых процессов (pipeline.workers) для обработки. Строгих правил, которые определяли бы выбор этих значений, нет – они выбирались экспериментальным путем по следующей методике:

  • Выбираем небольшой индекс: для тестов использовался индекс с 1 млн многострочных (это важно) записей.

  • Запускаем миграцию этого индекса с помощью Logstash.

  • Смотрим на thread_pool на приёмной дата-ноде, обращая внимание на количество «rejected» записей. Рост этого значения однозначно говорит о том, что ES не успевает проиндексировать поступающие данные – тогда количество параллельных процессов Logstash стоит уменьшить.

  • Если резкого роста «rejected» записей не происходит – увеличиваем количество bulk/workers и повторяем процесс.

После того как всё было подготовлено, составлены списки индексов на переезд, написаны конфигурации, а также разосланы предупреждения о предстоящих нагрузках в отделы сетевой инфраструктуры и мониторинга, я запустил процесс.

Чтобы не сидеть и не перезапускать процесс logstash, после завершения миграции очередного индекса я сделал с новым файлом конфигурации следующее:

  • Список индексов на переезд разделил на три примерно равные части.

  • В /etc/logstash/conf.d/migrate.conf оставил только статическую часть конфигурации:

    input {
    elasticsearch {
    hosts => [ "localhost:9200" ]
    size => 5000
    docinfo => true
    query => '{ "query": { "match_all": {} }, "sort": [ "@timestamp" ] }'}
    }
    output {
    elasticsearch { hosts => [ "log-new-data1:9200" ]
    index => "%{[@metadata][_index]}"
    document_type => "%{[@metadata][_type]}"
    document_id => "%{[@metadata][_id]}"}}
    }

  • Собрал скрипт, который читает имена индексов из файла и вызывает процесс logstash, динамически подставляя имя индекса и адрес ноды для миграции.

  • Всего нужно запустить три экземпляра скрипта, по одному на каждый файл: indices.to.move.0.txt, indices.to.move.1.txt и indices.to.move.2.txt. После этого данные уходят в первую, третью и пятую дата-ноды.

Код одного из экземпляров скрипта:

cat /tmp/indices_to_move.0.txt |  while read line
do

 echo $line > /tmp/0.txt && /usr/share/logstash/bin/logstash -f /etc/logstash/conf.d/migrate.conf --pipeline.workers 8 --config.string "input {elasticsearch { index => "$line" }} output { elasticsearch { hosts => [ "log-new-data1:9200" ] }}"

done;

Для просмотра статуса миграции пришлось «на коленке» собрать ещё один скрипт, и запустить в отдельном процессе screen (через watch -d -n 60):

#!/bin/bash 

regex=$(cat /tmp/?.txt)
regex="(($regex))"
regex=$(echo $regex | sed 's/ /)|(/g') 

curl -s localhost:9200/_cat/indices?h=index,docs.count,docs.deleted,store.size | grep -P $regex |sort > /tmp/indices.local

curl -s log-new-data1:9200/_cat/indices?h=index,docs.count,docs.deleted,store.size | grep -P$regex | sort > /tmp/indices.remote

echo -e "indextttcount.sourcetcount.desttremainingtdeletedtsource.gbtdest.gb"

diff --side-by-side --suppress-common-lines /tmp/indices.local /tmp/indices.remote | awk '{print $1"t"$2"t"$7"t"$2-$7"t"$8"t"$4"tt"$9}'

Процесс миграции занял около недели. И честно скажу – спалось мне эту неделю неспокойно.

После переезда

После переноса индексов осталось сделать совсем немного. В одну прекрасную субботнюю ночь старый кластер был выключен и изменены записи в DNS. Поэтому все пришедшие на работу в понедельник увидели новый розово-голубой интерфейс пятой Kibana. Пока сотрудники привыкали к обновленной цветовой гамме и изучали новые возможности, я продолжил работу.

Из старого кластера взял еще один освободившийся сервер и поставил на него два контейнера с дата-нодами ES под кластер новый. Все остальное железо отправилось в резерв.

Итоговая структура получилась точно такой, какой планировалась на первой схеме:

  • Три мастер-ноды.

  • Две клиентские ноды.

  • Восемь дата-нод (по две на сервер).

  • Четыре log-receiver (HAProxy + Heka Pools, по одному на каждый сервер).

Переводим кластер в production режим – возвращаем параметры буферов и интервалы обновления индексов:

memory.index_buffer_size: 10%
index.refresh_interval: 1s

Кворум кластера (учитывая три мастер-ноды) выставляем равным двум:

discovery.zen.minimum_master_nodes: 2

Далее нужно вернуть значения шард, принимая во внимание, что дата-нод у нас уже восемь:

{
    "default": {
        "order": 0,
        "template": "*",
        "settings": {
            "index": {
                "number_of_shards": "8",
                "number_of_replicas": "1"
            }
        }
    }
}

Наконец, выбираем удачный момент (все сотрудники разошлись по домам) и перезапускаем кластер.

Нашардить, но не смешивать

В этом разделе я хочу обратить особое внимание на снижение общей надёжности системы, которое возникает при размещении нескольких дата-нод ES в одном железном сервере, да и вообще при любой виртуализации.

Сохранить данные и веру в человечество: большая миграция кластера ElasticSearch - 3

С точки зрения ES кластера – всё хорошо: индекс разбит на шарды по количеству дата-нод, каждый шард имеет реплику, primary и replica шарды хранятся на разных нодах.

Система шардирования и репликации в ES повышают как скорость работы, так и надёжность хранения данных. Но эта система проектировалась с учётом размещения одной ноды ES на одном сервере, когда в случае проблем с оборудованием теряется лишь одна дата-нода ES. В случае с нашим кластером упадут две. Даже с учетом равного разделения индексов между всеми нодами и наличия реплики для каждого шарда, не исключена ситуация когда primary и replica одного и того же шарда оказываются на двух смежных дата-нодах одного физического сервера.

Поэтому разработчики ES предложили инструмент для управления размещением шард в пределах одного кластера – Shard Allocation Awareness (SAA). Этот инструмент позволяет при размещении шард оперировать не дата-нодами, а более глобальными структурами вроде серверов с LXD-контейнерами.

В настройки каждой дата-ноды нужно поместить ES атрибут, описывающий физический сервер, на котором она находится:

node.attr.rack_id: log-lxd-host-N

Теперь нужно перезагрузить ноды для применения новых атрибутов, и добавить в конфигурацию кластера следующий код:

{
    "persistent": {
        "cluster": {
            "routing": {
                "allocation": {
                    "awareness": {
                        "attributes": "rack_id"
                    }
                }
            }
        }
    }
}

Причем только в таком порядке, ведь после включения SAA кластер не будет размещать шарды на нодах без указанного атрибута.

Кстати, аналогичный механизм можно использовать для нескольких атрибутов. Например, если кластер расположен в нескольких дата-центрах и вы не хотите туда-сюда перемещать шарды между ними. В этом случае уже знакомые настройки будут выглядеть так:

node.attr.rack_id: log-lxd-hostN
node.attr.dc_id: datacentre_name

{
    "persistent": {
        "cluster": {
            "routing": {
                "allocation": {
                    "awareness": {
                        "attributes": "rack_id, dc_id"
                    }
                }
            }
        }
    }
}

Казалось бы, все в этом разделе очевидно. Но именно очевидное и вылетает из головы в первую очередь, так что отдельно проверьте – тогда после переезда не будет мучительно больно.

Следующая статья цикла будет посвящена двум моим самым любимым темам – мониторингу и тюнингу уже построенной системы. Обязательно пишите в комментариях, если что-то из уже написанного или запланированного особенно интересно и вызывает вопросы.

Автор: adel-s

Источник

* - обязательные к заполнению поля


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js