Алиса, Яндекс.Станция и Nigthscout

в 21:11, , рубрики: api, Nigthscout, python, алиса, облачные сервисы, Яндекс API, яндекс.станция

Родители детей с диабетом знают, как сложно убедить ребенка постоянно следить за уровнем глюкозы. Поэтому любой дополнительный интерфейс "лишним" не будет: виджет на телефоне, смарт-часы, уведомления в мобильном приложении.

Сервис Nightscout, представляющий собой веб-приложение с базой данных об уровне глюкозы и событиях терапии, позволяет обращаться к себе по API с запросом информации. А всем известная голосовая помощница и колонка с ней - позволяет разрабатывать для себя индивидуальные варианты диалогов "запрос" - "ответ".

Например, "скажи, какой уровень глюкозы у ... ?". а в ответ: "уровень такой-то, снижение/рост на столько-то, за последние Х минут снижение/рост умеренный/сильный на Y ммоль на литр." (немного легкой аналитики и выводов).

Итак, по шагам.

  1. Заводим аккаунт в Яндекс.Cloud и создаем Virtual Private Cloud (своё личное облако). Это бесплатно в "минимальной комплектации" и при умеренном потреблении ресурсов (как и всё остальное, перечисленное ниже). Выполните шаги из раздела "Перед началом работы" и "Создайте облачную сеть" из инструкции по ссылке https://cloud.yandex.ru/docs/vpc/quickstart?from=int-console-help-center-or-nav

    Теперь у вас есть облако и каталог в нём, где можно создавать функции (программы, которые можно запускать по команде).

  2. Создаем функцию в облаке. В ней будет программный код, который Алиса запустит по команде и получит от него результат, который сообщит голосом.

    1. В консоли управления перейдите в каталог. Выберите сервис Cloud Functions. Нажмите кнопку Создать функцию. Введите имя функции — get-glucose-from-nightscout (имя не имеет значения, введите любое понятное). Нажмите кнопку Создать. Система предложит выбор языка программирования и его версии, выбираем Python 3.7, галку "Добавить файлы с примерами кода" оставляем на месте.

    2. В появившемся интерфейсе функции есть разделы: обзор, редактор, тестирование. Сейчас мы находимся в редакторе. Он состоит из трех областей: список файлов в левой части, открытые файлы справа (пока один - index.py) и параметры функции внизу.

    3. В области справа открыт файл index.py, удаляем всё из него и вставляем туда код, указывая в нем свои апи-секрет Найтскаута и свой адрес сайта (домен):

import requests
import datetime

NS_API_SECRET = 'апи-секрет найтскаута' 
NS_DOMAIN = r'https://сайт.доменнаязона'

# главная функция - она же указана в параметрах как точка входа
def handler(event, context):
    # запрашиваем последние 6 показаний из Найтскаута (~30 минут для примера)
    a = requests.get(fr'https://{NS_API_SECRET}@{NS_DOMAIN}/api/v1/entries.json?count=6').json()
    # вычисляем количество минут между первым и последним показанием
    minutes = int((a[0]['date'] - a[len(a)-1]['date'])/(1000*60))
    # вычисляем разницу в ммоль между первым и последним уровнем ГК
    delta_big = round((a[0]['sgv'] - a[len(a)-1]['sgv'])/18, 1)
    # начало части сообщения - о динамике за последние 6 периодов
    delta_big_txt = '. Последние ' + str(minutes) + ' минут'
    # детали динамики за последние 6 периодов в зависимости от величины отклонения
    if 0.5 >= delta_big > 0 or -0.5 <= delta_big < 0:
        delta_big_txt += ' изменение небольшое, в пределах 0,5 миллимоль'
    elif 0.5 < delta_big <= 2:
        delta_big_txt += ' рост умеренный - ' + str(abs(delta_big)).replace('.', ',') 
                         + ' миллимоль'
    elif -0.5 > delta_big >= -2:
        delta_big_txt += ' снижение умеренное - ' 
                         + str(abs(delta_big)).replace('.', ',') + ' миллимоль'
    elif delta_big > 2:
        delta_big_txt += ' сильный рост на ' 
                         + str(abs(delta_big)).replace('.', ',') + ' миллимоль'
    elif delta_big < -2:
        delta_big_txt += ' сильное снижение на ' 
                         + str(abs(delta_big)).replace('.', ',') + ' миллимоль'
    elif delta_big == 0:
        delta_big_txt += ' нулевое изменение.'
    else:
        delta_big_txt += ' не смог определить отклонение.'
        
    current_level = 0
    delta = 0
    # перебираем все 6 сообщений до первой встречи с сообщением "с уровнем"
    for i in a:
        if 'type' in i and i['type'] == 'sgv':
            current_level = i['sgv']/18
            delta = i['delta']/18
            break
    # готовим текст с текущим уровнем и величиной отклонения от предыдущего сообщения
    if delta < 0:
        delta_text = ' снижение на ' + str(round(abs(delta), 2)).replace('.', ',') 
            + ' миллимоль за последние 5 минут'
    elif delta > 0:
        delta_text = ' повышение на ' + str(round(abs(delta), 2)).replace('.', ',') 
            + ' миллимоль за последние 5 минут'
    else:
        delta_text = ' за последние 5 минут не менялся.'
    # возвращаем результат в формате, съедобном для Алисы
    # всё, что она произнесет - указано после ключа 'text'
      return {
        'version': event['version'],
        'session': event['session'],
        'response': {
            # тут всё, что Алиса в итоге произнесет
            'text': 'Уровень ' + str(round(current_level, 1)).replace('.', ',') 
                    + ' миллимоль.' + delta_text + delta_big_txt,
            # true - завершить сессию после возврата ответа, Алиса освободится
            'end_session': 'true'
        },
    }
  1. Нажимаем Создать файл и называем его requirements.txt

  2. Добавляем в файл две строки - requests и datetime

Алиса, Яндекс.Станция и Nigthscout - 1
  1. Нажимаем в правом верхнем углу Создать версию и переходим в раздел Тестирование.

  2. В разделе Тестирование выбираем шаблон данных Навык Алисы и нажимаем кнопку "Запустить тест". Прокручиваем результат теста вниз и видим возле ключа text результат:

Алиса, Яндекс.Станция и Nigthscout - 2

Теперь идем в Яндекс.Диалоги (dialogs.yandex.ru). Нажимаем Создать диалог, вариант диалога - Навык Алисы. В настройках указываем имя навыка (оно будет частью ключевой фразы, я выбрал "уровень глюкозы"). Параметр "Backend" переключаем в "Функция в Яндекс Облаке", из выпадающего списка выбираем вышесозданную функцию. Выбираем голос. Тип доступа - приватный. Дальше ввести формулу команды, имя разработчика, выбрать категорию, краткое описание и установить иконку. Это всё, чего будет достаточно для "публикации" навыка (в приватном режиме).

Алиса, Яндекс.Станция и Nigthscout - 3

Выбрать в качестве иконки любую картинку, нажать Сохранить внизу и нажать справа вверху "Опубликовать". Навык перейдет в стадию "опубликован".

После этого можно запустить Алису на своем мобильном телефоне или если есть Яндекс.Станция - сказать ей: Алиса, скажи уровень глюкозы у ...

В ответ будет произнесена фраза, которую сформировал код функции.

Дальше я буду попробовать реализовать голосовой ввод данных о терапии и съеденных углеводах в Nightscout, и включать Яндекс.Лампочку в качестве сигнализации о высоком или низком уровне глюкозы (и тенденции) в спальне.

Автор:
ArtyomMorozov1

Источник

* - обязательные к заполнению поля


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js