Основные структуры данных. Матчасть. Азы

в 10:45, , рубрики: Алгоритмы, дерево, массив, Матчасть, очередь, перевод, Программирование, стек, типы данных, хеш

Все чаще замечаю, что современным самоучкам очень не хватает матчасти. Все знают языки, но мало основы, такие как типы данных или алгоритмы. Немного про типы данных.

Еще в далеком 1976 швейцарский ученый Никлаус Вирт написал книгу Алгоритмы + структуры данных = программы.

40+ лет спустя это уравнение все еще верно. И если вы самоучка и надолго в программировании пробегитесь по статье, можно по диагонали. Можно код кофе.

Основные структуры данных. Матчасть. Азы - 1

В статье так же будут вопросы, которое вы можете услышать на интервью.

Что такое структура данных?

Структура данных — это контейнер, который хранит данные в определенном макете. Этот «макет» позволяет структуре данных быть эффективной в некоторых операциях и неэффективной в других.

Какие бывают?

Линейные, элементы образуют последовательность или линейный список, обход узлов линеен. Примеры: Массивы. Связанный список, стеки и очереди.

Нелинейные, если обход узлов нелинейный, а данные не последовательны. Пример: граф и деревья.

Основные структуры данных.

  1. Массивы
  2. Стеки
  3. Очереди
  4. Связанные списки
  5. Графы
  6. Деревья
  7. Префиксные деревья
  8. Хэш таблицы

Массивы

Массив — это самая простая и широко используемая структура данных. Другие структуры данных, такие как стеки и очереди, являются производными от массивов.

Изображение простого массива размера 4, содержащего элементы (1, 2, 3 и 4).

Основные структуры данных. Матчасть. Азы - 2

Каждому элементу данных присваивается положительное числовое значение (индекс), который соответствует позиции элемента в массиве. Большинство языков определяют начальный индекс массива как 0.

Бывают

Одномерные, как показано выше.
Многомерные, массивы внутри массивов.

Основные операции

  • Insert-вставляет элемент по заданному индексу
  • Get-возвращает элемент по заданному индексу
  • Delete-удаление элемента по заданному индексу
  • Size-получить общее количество элементов в массиве

Вопросы

  • Найти второй минимальный элемент массива
  • Первые неповторяющиеся целые числа в массиве
  • Объединить два отсортированных массива
  • Изменение порядка положительных и отрицательных значений в массиве

Стеки

Стек — абстрактный тип данных, представляющий собой список элементов, организованных по принципу LIFO (англ. last in — first out, «последним пришёл — первым вышел»).

Это не массивы. Это очередь. Придумал Алан Тюринг.

Примером стека может быть куча книг, расположенных в вертикальном порядке. Для того, чтобы получить книгу, которая где-то посередине, вам нужно будет удалить все книги, размещенные на ней. Так работает метод LIFO (Last In First Out). Функция «Отменить» в приложениях работает по LIFO.

Изображение стека, в три элемента (1, 2 и 3), где 3 находится наверху и будет удален первым.

Основные структуры данных. Матчасть. Азы - 3

Основные операции

  • Push-вставляет элемент сверху
  • Pop-возвращает верхний элемент после удаления из стека
  • isEmpty-возвращает true, если стек пуст
  • Top-возвращает верхний элемент без удаления из стека

Вопросы

  • Реализовать очередь с помощью стека
  • Сортировка значений в стеке
  • Реализация двух стеков в массиве
  • Реверс строки с помощью стека

Очереди

Подобно стекам, очередь — хранит элемент последовательным образом. Существенное отличие от стека – использование FIFO (First in First Out) вместо LIFO.

Пример очереди – очередь людей. Последний занял последним и будешь, а первый первым ее и покинет.

Изображение очереди, в четыре элемента (1, 2, 3 и 4), где 1 находится наверху и будет удален первым

Основные структуры данных. Матчасть. Азы - 4

Основные операции

  • Enqueue—) — вставляет элемент в конец очереди
  • Dequeue () — удаляет элемент из начала очереди
  • isEmpty () — возвращает значение true, если очередь пуста
  • Top () — возвращает первый элемент очереди

Вопросы

  • Реализовать cтек с помощью очереди
  • Реверс первых N элементов очереди
  • Генерация двоичных чисел от 1 до N с помощью очереди

Связанный список

Связанный список – массив где каждый элемент является отдельным объектом и состоит из двух элементов – данных и ссылки на следующий узел.

Принципиальным преимуществом перед массивом является структурная гибкость: порядок элементов связного списка может не совпадать с порядком расположения элементов данных в памяти компьютера, а порядок обхода списка всегда явно задаётся его внутренними связями.

Бывают

Однонаправленный, каждый узел хранит адрес или ссылку на следующий узел в списке и последний узел имеет следующий адрес или ссылку как NULL.

1->2->3->4->NULL

Двунаправленный, две ссылки, связанные с каждым узлом, одним из опорных пунктов на следующий узел и один к предыдущему узлу.

NULL<-1<->2<->3->NULL

Круговой, все узлы соединяются, образуя круг. В конце нет NULL. Циклический связанный список может быть одно-или двукратным циклическим связанным списком.

1->2->3->1

Самое частое, линейный однонаправленный список. Пример – файловая система.

Основные структуры данных. Матчасть. Азы - 5

Основные операции

  • InsertAtEnd — Вставка заданного элемента в конец списка
  • InsertAtHead — Вставка элемента в начало списка
  • Delete — удаляет заданный элемент из списка
  • DeleteAtHead — удаляет первый элемент списка
  • Search — возвращает заданный элемент из списка
  • isEmpty — возвращает True, если связанный список пуст

Вопросы

  • Реверс связанного списка
  • Определение цикла в связанном списке
  • Возврат N элемента из конца в связанном списке
  • Удаление дубликатов из связанного списка

Графы

Граф-это набор узлов (вершин), которые соединены друг с другом в виде сети ребрами (дугами).

Основные структуры данных. Матчасть. Азы - 6

Бывают

Ориентированный, ребра являются направленными, т.е. существует только одно доступное направление между двумя связными вершинами.
Неориентированные, к каждому из ребер можно осуществлять переход в обоих направлениях.
Смешанные

Встречаются в таких формах как

  • Матрица смежности
  • Список смежности

Общие алгоритмы обхода графа

  • Поиск в ширину – обход по уровням
  • Поиск в глубину – обход по вершинам

Вопросы

  • Реализовать поиск по ширине и глубине
  • Проверить является ли граф деревом или нет
  • Посчитать количество ребер в графе
  • Найти кратчайший путь между двумя вершинами

Деревья

Дерево-это иерархическая структура данных, состоящая из узлов (вершин) и ребер (дуг). Деревья по сути связанные графы без циклов.

Древовидные структуры везде и всюду. Дерево скилов в играх знают все.

Простое дерево

Основные структуры данных. Матчасть. Азы - 7

Типы деревьев

Бинарное дерево самое распространенное.

«Бинарное дерево — это иерархическая структура данных, в которой каждый узел имеет значение (оно же является в данном случае и ключом) и ссылки на левого и правого потомка. » — Procs

Три способа обхода дерева

  • В прямом порядке (сверху вниз) — префиксная форма.
  • В симметричном порядке (слева направо) — инфиксная форма.
  • В обратном порядке (снизу вверх) — постфиксная форма.

Вопросы

  • Найти высоту бинарного дерева
  • Найти N наименьший элемент в двоичном дереве поиска
  • Найти узлы на расстоянии N от корня
  • Найти предков N узла в двоичном дереве

Trie ( префиксное деревое )

Разновидность дерева для строк, быстрый поиск. Словари. Т9.

Вот как такое дерево хранит слова «top», «thus» и «their».

Основные структуры данных. Матчасть. Азы - 8

Слова хранятся сверху вниз, зеленые цветные узлы «p», «s» и «r» указывают на конец «top», «thus « и «their» соответственно.

Вопросы

  • Подсчитать общее количество слов
  • Вывести все слова
  • Сортировка элементов массива с префиксного дерева
  • Создание словаря T9

Хэш таблицы

Хэширование — это процесс, используемый для уникальной идентификации объектов и хранения каждого объекта в заранее рассчитанном уникальном индексе (ключе).

Объект хранится в виде пары «ключ-значение», а коллекция таких элементов называется «словарем». Каждый объект можно найти с помощью этого ключа.

По сути это массив, в котором ключ представлен в виде хеш-функции.

Эффективность хеширования зависит от

  • Функции хеширования
  • Размера хэш-таблицы
  • Метода борьбы с коллизиями

Пример сопоставления хеша в массиве. Индекс этого массива вычисляется через хэш-функцию.
Основные структуры данных. Матчасть. Азы - 9

Вопросы

  • Найти симметричные пары в массиве
  • Найти, если массив является подмножеством другого массива
  • Описать открытое хеширование

Список ресурсов

Вместо заключения

Матчасть так же интересна, как и сами языки. Возможно, кто-то увидит знакомые ему базовые структуры и заинтересуется.

Спасибо, что прочли. Надеюсь не зря потратили время =)

Автор: demet

Источник

* - обязательные к заполнению поля


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js