Когда с нами что-то происходит наш
Вполне естественно, что понимание того, как выглядят следы памяти – основной вопрос изучения
Еще большую интригу в загадку памяти вносят исследования по локализации воспоминаний. Еще в первой половине двадцатого века Карл Лэшли поставил очень интересные опыты. Сначала он обучал крыс находить выход в лабиринте, а затем удалял им различные части
Эти опыты вдохновили Карла Прибрама сформулировать ставшую популярной теорию голографической памяти. В соответствии с ней, аналогично оптической голограмме, каждое конкретное воспоминание не находится в каком-то одном месте коры, а присутствует в каждом ее месте и, соответственно, каждое место коры хранит сразу все воспоминания.
Одно время, очень большие надежды в поисках энграмм связывались с синаптической пластичностью. Способность синапсов менять свою чувствительность давала надежду, что через это можно описать все механизмы памяти. Представление о пластичности синапсов привело к созданию искусственных нейронных сетей. Эти сети показали, как нейрон может обучиться узнавать, что-то общее для набора воспоминаний. Но узнавать общее — это совсем не то же, что хранить отдельные воспоминания.
Если вы не занимайтесь непосредственно нейронауками, то скорее всего у вас сложилось впечатление, что у нейробиологов есть множество теорий относительно памяти, но, видимо, нет уверенности, какая из них верна. И так как, скорее всего, эти теории очень сложны, то о них не особо рассказывают в популярной литературе. Так вот, до сих пор, как ни удивительно это звучит, нет ни одной теории памяти. То есть, есть разные предположения о том, что может быть связано с памятью. Но нет никаких моделей, которые бы хоть как-то объясняли, как выглядят энграммы и как они работают.
При этом накоплены огромные знания о биологии нейронов, о проявлениях памяти, о молекулярных процессах, сопутствующих формированию воспоминаний и тому подобное. Но углубление знаний не упрощает ситуацию, а только усложняет ее. Пока о предмете исследований известно не особо много, удобно фантазировать. Полет фантазии не сильно ограничен рамками знаний. Но по мере того, как становятся известны все новые и новые факты, многие гипотезы отпадают сами собой. Придумать же новые, которые находились бы в согласии с фактами становится все труднее.
Когда в науке наступает такая ситуация – это верный признак того, что где-то в самое начало рассуждений закралась фатальная ошибка. В свое время Аристотель сформулировал законы движения. Он, исходил из того, что видел перед собой. Аристотель сказал, что есть два вида движения: естественное движение и принудительное движение. Естественное движение, по Аристотелю, присуще только небесному веществу и только небесные тела могут двигаться без прикладывания силы. Все остальные «земные» тела для движения требуют приложения силы, иначе любое движение рано или поздно должно прекратиться. Почти две тысячи лет это считалось очевидной истиной, так как все остальные видели перед собой то же самое. Но при этом, почему-то, никому за все эти два тысячелетия не удалось построить ни одной работоспособной теории, которая пошла бы дальше утверждений Аристотеля. И только, когда Галилей и Ньютон указали на досадную ошибку Аристотеля, что, дескать, он забыл про силу трения, оказалось возможным сформулировать известные нам законы механики. Затем, правда, был Эйнштейн, но это уже другая история.
Мне кажется, что таким «принудительным движением», сейчас, в нейронауке выступает «нейрон бабушки». По сути, все основные трудности с построением теории памяти связаны с тем, что оказывается очень трудной задачей увязать конкретный нейрон, если приписывать ему функции детектора какого-либо свойства, и память, которая в силу многих причин, не должна быть жестко привязана к определенному нейрону.
Далее я покажу, как могут выглядеть энграммы для случая, когда нейроны лишаются своих «бабушкиных» наклонностей.
В предыдущих частях был описан клеточный автомат, состоящий из однородных элементов. Когда в любом месте этого автомата создается какой-либо узор активности от этого места расходится фронт волны. В каждом месте этого фронта возникает уникальный специфичный, только для этой волны узор.
Если запомнить какой рисунок создает волна, проходя через какое-либо место, то затем можно в том же месте воспроизвести этот же рисунок и запустить из этого места новую волну. В каждом месте, которое на своем пути пройдет эта новая волна, она будет повторять узор исходной волны.
Если составить словарь, состоящий из конечного числа понятий, то каждому понятию можно сопоставить свою уникальную волну. Тогда, в любом месте автомата по узору проходящей волны можно будет определить, какое понятие распространяет эта волна. И из любого места можно будет запустить волну любого понятия если воспроизвести в этом месте фрагмент узора нужной нам волны.
Плоскому авомату можно придать объем.
Прохождение волны в небольшом цилиндрическом объеме тогда будет выглядеть, как показано на рисунке ниже.
Если запустить в автомате информационную волну, а затем запустить волну идентификатора. То можно запомнить картину условной “интерференции” этих волн. Для этого в каждом месте автомата элементами, по которым прошла информационная волна, надо запомнить окружающий их узор волны идентификатора. Такая процедура позволяет запомнить пару «ключ – значение». Если впоследствии запустить в автомат волну идентификатора воспоминания, то элементы автомата воспроизведут узор информационной волны самого воспоминания.
Запомнить информационную пару «ключ – значение» можно, как избирательно в любой малой области автомата, так и глобально во всем пространстве автомата. При глобальном запоминании информация оказывается многократно продублирована по всей площади автомата.
Когда информационное описание состоит не из одного понятия, а из нескольких, то передать такое описание по автомату можно, последовательно распространив информационные волны этих понятий.
В каждом фиксированном объеме автомата прохождение серии волн вызовет смену узоров, каждый из которых можно записать бинарным вектором. Если в описании неважна последовательность понятий, то для одного места автомата бинарные вектора, создаваемые разными волнами можно побитно логически сложить и получить суммарный вектор описания. Этот суммарный вектор при достаточной разрядности сохраняет всю информацию о входящих в него понятиях.
Суммарный вектор имеет высокую разрядность и содержать большое количество единиц. Уменьшить количество единиц и понизить разрядность суммарного вектора можно, рассчитав для него хеш-функцию.
Идентификатор воспоминания, как и само описание, может состоять из нескольких понятий. Тогда и для него можно вычислить соответствующий хеш. При запоминании могут использоваться не исходные коды, а полученные хеши.
Ранее было показано, что для реального
Вычисление нейронами хеш-функции дендритных сигналов
Дендритные веточки образуют дендритное дерево (рисунок ниже). Веточки имеют только парные ветвления и не образуют замкнутых циклов.
Модели реальных нейронов (проект EyeWire)
Спайк нейрона возникает, когда деполяризация мембраны на его теле в районе аксонного холмика достигает критического значения. Деполяризация сомы, то есть тела нейрона, происходит, в основном, за счет сигналов от дендритных веточек. Потенциально такими сигналами могут быть токи, возникающие в дендритных веточках и дендритные спайки.
За счет того, что на пути к соме сигналы разных веточек в местах ветвления взаимодействуют между собой, сигналы, доходящие то тела нейрона, оказывается некими функциями сигналов дендритных веточек. Сам мембранный потенциал тела нейрона оказывается функцией сигналов всех веточек его дендритного дерева. Это, кстати, не особо противоречит классическому представлению о формальном нейроне. С той оговоркой, что классический формальный нейрон является простым пороговым сумматором сигналов на синапсах, а мы говорим о достаточно хитрой функции сигналов дендритных веточек.
В описанной трактовке спайк одного нейрона можно смело назвать бинарным результатом хеш-преобразования над сигналами его дендритных веточек. Таким образом, можно говорить о том, что вся картина активности нейронов может быть истолкована, как результат хеш-преобразования активности дендритных сегментах.
Для активации нейрона вся активность, возникающая на дендритном дереве должна уложиться в небольшой временной интервал, составляющий несколько миллисекунд. Если предположить, что за такой интервал и формируется суммарная картина дендритной активности, возникающая после прохождения всех волн сложного описания, то спайки нейронов идеально подходят на роль хеша, связанного с картиной, возникшей на дендритных сегментах.
Для запоминания через интерференцию паттернов необходимо две волны: волна идентификатора и волна значения, то есть сохраняемой информации. В реальной коре эти волны могут распространяться одновременно. При этом, идентификатор сам может быть достаточно сложным описанием. Можно предположить, что в коре хеш для информации и хеш для идентификатора могут формироваться одновременно, но разными нейронами. В принципе, эти нейроны могут быть нейронами разных типов. Самые распространенные нейроны коры – это пирамидальные и звездчатые нейроны. Может так оказаться, что, например, активность пирамидальных нейронов кодирует хеш-функцию для информации, а активность звездчатых хеш-функцию для идентификаторов воспоминаний.
Избранные точки дендрита
Мы пришли к тому, что в каждом месте коры текущая информация может кодироваться сочетанием активности расположенных в этом месте нейронов. Совокупную мгновенную картину их спайков при этом можно воспринимать, как хеш-функцию от соответствующей этим нейронам дендритной активности.
В клеточном автомате для запоминания требовалось, чтобы каждый элемент автомата видел и мог запомнить фрагмент хеш-кода, достаточной длины. Волна идентификатора указывала, какие элементы должны запоминать, а серия информационных волн формировала суммарную картину активности элементов из которой получался тот самый хеш-код, который они должны были запоминать.
В аналогии с
Если учесть, что мы хотим, чтобы одна веточка могла запомнить не одну и не две, а тысячи или миллионы различных комбинаций активности нейронов, то задача становится очень интересной.
До сих пор мы, в основном, говорили о дендритных деревьях нейронов, теперь посмотрим на их аксоны. Итак, основной процент нейронов коры приходится на пирамидальные и звездчатые нейроны. Для аксонов этих нейронов характерны сильно ветвящиеся коллатерали. Большая часть синаптических контактов аксона приходится на объем, размеры которого сопоставимы с размером дендритного дерева (рисунок ниже). Такая геометрия аксона обеспечивает то, что сигнал об активности нейрона становится доступен практически всем дендритным веткам этого и других нейронов, находящимся в некоторой окрестности (радиусом порядка 50-70 мкм) этого нейрона.
Структура звездчатого нейрона, линейка – 0.1 мм (Braitenberg, 1978)
Доступность сигнала следует понимать в том смысле, что для каждой дендритной ветки поблизости он нейрона будет место где вблизи от нее пройдет аксон этого нейрона. Соответственно, в момент активности нейрона по его аксону распространяется спайк и из всех синапсов, образуемых аксоном, высвобождаются нейромедиаторы. Часть этих нейромедиаторов за счет спиловера, то есть выброса за пределы синапса, может достичь требуемой дендритной ветки.
Вообще, аксоны могут распрстраняться далеко по коре или за ее пределы. Но основное ветвление аксона в большинстве случаев приходится на пространство окружающее сам нейрон. Среднее расстояние между синапсами на дендрите 0.5 мкм. Среднее расстояние между синапсами на аксоне 5 мкм. Число контактов на дендритах равно числу контактов на синапсах. Соответственно, суммарная длина аксона в 10 раз больше суммарной длины дендрита. На ближайшее окружающее нейрон пространство приходится около 6000 его синапсов. Это соответствует длине аксона в 3 сантиметра. Теперь, представьте, что эти 3 сантиметра уложены в сферу радиусом менее одной десятой миллиметра и вы получите представление о характере ветвления аксона. Рядом с любым сегментом дендрита проход множество аксонов соседних нейронов, причем некоторые приближаются к нему не по одному разу.
Синапсы непосредственно окружающие дендритную ветку, как собственные, так и просто, находящиеся рядом, являются источниками внесинаптических нейромедиаторов для этой ветки. Изобразим расположение этих источников вдоль условного сегмента дендрита (рисунок ниже). Для этого совместим источники с дендритом, приблизительно соблюдая их положение по длине дендрита. Занумеруем окружающие дендрит нейроны. Тогда для каждого источника на этой ветке можно указать номер нейрона из окружающего пространства, управляющего этим источником. Каждый из нейронов окружения может иметь сразу несколько контролируемых им источников, случайным образом распределенных по дендриту. Обозначим соотнесение нейронов и источников на дендритной ветке вектором D с элементами di, где каждый элемент – номер нейрона, управляющего источником.
Соотнесение окружающих нейронов и их контактов на дендрите
Обозначим Nneuron – количество нейронов окружения и Nsource – количество источников для одного сегмента дендрита.
Если мы зададимся расстоянием, на которое распространяются нейромедиаторы после спиловера, то сможем определить какие синапсы способны влиять на выбранное место дендрита. Обозначим через Ncatch количество источников, способных влиять на выбранное место дендрита. Для этих источников такое место можно назвать «ловушкой».
Теперь предположим, что несколько нейронов из окружения дендрита дали спайки. Это можно трактовать как сигнал, доступный для наблюдения нашему дендритному сегменту. Обозначим Nsig – количество активных нейронов, создающих информационный сигнал. Запишем этот сигнал бинарным вектором S размерности Nsource.
Для всех позиций на дендрите, кроме самых крайних, можно определить количество активных источников (плотность сигнала), попадающих в ловушку, по формуле
Например, для сигнала, показанного на рисунке ниже, плотность сигнала в отмеченной синаптической ловушке составит 2 (сумма сигналов от 1-го и 4-го нейронов).
Отображение активности двух нейронов окружения на дендритный сегмент (показана только часть связей и нумерации)
Для любого произвольного сигнала можно рассчитать какое распределение плотности он создаст на дендрите. Эта плотность будет колебаться в диапазоне от 0 до Ncatch. Максимальное значение будет достигаться, когда будут активны все источники, образующие соответствующую ловушку.
Воспользуемся значениями, характерными для реальной коры крысы (Braitenberg V., Schuz A., 1998) и, исходя из них, выберем ориентировочные параметры модели:
Длина секции = 150 мкм (300 синапсов, в среднем 0.5 мкм между синапсами)
Радиус плотного ветвления дендрита = 70 мкм
Плотность нейронов в коре = 9x104/мм3
Количество нейронов в окружении дендрита (Nneuron) = 100
Количество источников для дендритного сегмента (Nsource) = 3000
Размеры ловушки (Ncatch) = 15
Будем полагать, что сигнал кодируется активностью, например, 10% нейронов, тогда
Nsig = 10
Можно рассчитать вероятность того, что для произвольного сигнала, состоящего из Nsig единиц, найдется хотя бы одно место на дендритном сегменте, где сигнальная плотность составит ровно K единиц. Для приведенных параметров вероятность принимает следующие значения:
Таблица вероятности нахождения хотя бы одной ловушки с заданной плотностью. Первый столбец – требуемое количество активных источников в ловушке. Второй – вероятность нахождения на дендрите хотя бы одного места, где будет именно такое количество активных источников
Из таблицы видно, что с вероятностью близкой к 1 на любом дендритном сегменте для любого выбранного объемного сигнала найдется место, в котором сойдутся как минимум 5 аксонов активных нейронов. Это место дендрита можно считать избранным по отношению к выбранному сигналу. Если в этом месте запомнить какие именно аксоны (синапсы) были активны, то это позволит в последствии с высокой точностью детектировать повторение того-же сигнала.
Точность детектирования определяется вероятностью коллизий, то есть вероятностью того, что в каком-либо другом объемном сигнале окажутся активны те же нейроны, аксоны которых сошлись в избранном месте. То есть если, например, сигнал определяется активностью 10 нейронов из 100 и в избранном месте было зафиксировано сочетание 5 из этих 10 нейронов, то для коллизии достаточно, чтобы в каком-либо другом сигнале именно эти 5 нейронов также оказались активны.
Обозначим количество нейронов «пойманных» в ловушку, то есть активность которых совпала в избранном месте, через K. Чтобы другой сигнал, состоящий из Nsig активных нейронов, вызвал ошибочное узнавание надо, чтобы К его нейронов совпали с нейронами ловушки. Число таких совпадающих сигналов – . Общее количество возможных сигналов — , вероятность ошибки
Для нашей модели при K=5 вероятность ошибки детектирования составит 3,34x10-6, при K=6, соответственно, вероятность ниже — 1,76x10-7.
Кодирование сигнала в избранном месте сочетанием нейромедиаторов
Каждое место дендрита окружено синапсами, как собственными, так и соседних дендритов. Эти синапсы являются источниками внесинаптических нейромедиаторов. Те из синапсов, что способны влиять на выбранное место дендрита образуют ловушку. Среднее количество таких синапсов для произвольного места дендрита — Ncatch. Зададимся значением K, определяющим то, сколько синапсов должно быть активно, чтобы считать место избранным по отношению к объемному сигналу. Видно, что для каждого места дендрита будет существовать достаточно много сигналов, создающих в этом месте минимум K пересечений. Чтобы мы могли с высокой точностью отследить повторение искомого сигнала необходимо не просто зафиксировать факт того, что в избранном по отношению к этому сигналу месте сработало К источников, а надо еще убедиться, что это именно те источники, что соответствуют сигналу. То есть надо по выбросу нейромедиаторов понять не просто сколько синапсов активировалось, а определить какие именно синапсы сработали на этот раз.
Как мы уже говорили, для большинства синапсов, в момент активности выделяется один «основной» нейромедиатор и в дополнение к нему один нейропептид или более ( Lundberg, J. M. 1996. Pharmacol. Rev. 48: 113-178.) (Bondy, C.A., et al. 1989. Cell. Mol. Neurobiol. 9: 427-446). Факт наличия у нейронов
Таким образом, если в избранном по отношению к определенному сигналу месте дендрита поместить детектор, чувствительный к сочетанию веществ, характерному для этого сигнала, то срабатывание этого детектора будет с очень высокой вероятностью говорить о повторении исходного сигнала.
Теперь мы знаем, что на каждой дендритной веточке всегда найдется место, которое окажется избранным по отношению к любому сигналу окружающих нейронов. Нам осталось понять, как веточка дендрита может запомнить, что это ее избранное место должно реагировать на определенное сочетание нейромедиаторов.
Рецепторы нейронов, как элементы памяти
Описывая работу нейрона, мы говорили, что окружающие вещества влияют на работу нейрона через его рецепторы. Рецепторы бывают ионотропные и метаботропные. Ионотропные рецепторы связываются с нейромедиаторами, высвобождающимися в синапсе, что вызывает изменение их конформации. Конформация молекулы – это изменение ее пространственной структуры без изменения самого состава молекулы.
Ионотропные рецепторы одновременно являются ионными каналами. Изменение конформации открывает ионный канал рецептора, что приводит к перемещению ионов и, соответственно, изменению мембранного потенциала.
Метаботропные рецепторы не имеют ионных каналов и действуют иначе. Той частью, что находится внутри нейрона они связаны с, так называемыми, G-белками. Когда эти рецепторы взаимодействуют со своими сигнальными веществами их конформация меняется и G-белок отпускается. Это ведет к разным возможным последствиям. Одно из возможных последствий – это открытие G-белками соседних ионных каналов, которые достаточно быстро меняют локальный мембранный потенциал нейрона. Что, в свою очередь, вызывает токи в дендрите и может стать причиной дендритного спайка.
Метаботропный рецептор, мембрана нейрона и G-белок
Метаботропные рецепторы, в основном, располагаются вне синапсов и являются мишенями именно для внесинаптических нейромедиаторов. Рецепторы, в основном, объединяются в кластеры и действуют совместно. Кластеры метаботропных рецепторов, по сути, являются разнообразными детекторами, настроенными на определенные сочетания нейромедиаторов.
Кластеры метаботропных рецепторов очень подходят на роль элементов энграммы для нашей модели. Рядом с каждым синапсом могут находиться сотни таких кластеров. В них заранее случайным образом составлены сочетания рецепторов, потенциально чувствительные ко многим возможным в этом месте комбинациям внесинаптических нейромедиаторов, то есть таких нейромедиаторов, которые могут выделиться во внешнюю среду из соседних синапсов.
То есть расположенные в большом количестве в каждом месте дендрита метаботропные рецепторы могут являться «заготовками» для будущих энграмм. Переход «заготовок» в энграммы можно описать так. Предположим, что кластеры рецепторов, относящиеся к какой-либо дендритной ветке, изначально неактивны и никак не влияют на ее работу. Когда этой ветке требует произвести запоминание он дает знать об этом всем метаботропным рецепторам. Таким сигналом, например, может быть небольшая общая деполяризация мембраны этой ветки. Как мы говорили выше, где-то на этой ветке обязательно найдется избранное место. То есть место, где рядом с этой веточкой окажется сразу несколько активных синапсов. Если в этом месте веточки найдется кластер с рецепторами, чувствительность которого совпадет с коктейлем нейромедиаторов, то этот кластер должен будет перейти в активное состояние и впоследствии всегда реагировать на появление своего коктейля. Если до этого кластер не влиял на работу веточки дендрита, то теперь он должен будет при появлении своего коктейля создавать возбуждающий постсинаптический потенциал.
Оказывается, что метаботропные рецепторы, действительно умеют так себя вести. Определенные обстоятельства могут погружать наружные и внутренние части рецептора встречно в мембрану, лишая рецептор чувствительности. Или, наоборот, чувствительные части рецептора могут быть вытолкнуты из мембраны. В таком чувствительном состоянии рецептор может пребывать какое-то время, затем он может вернуться в исходное состояние – это соответствует краткосрочной памяти. Рецептор может и надолго зафиксировать такое чувствительное состояние. Если складываются подходящие условия, то начинаются процессы адгезии и полимеризации, которые могут оставить рецептор в чувствительном состоянии на дни и недели. Если процесс фиксации, который длится, предположительно, около месяца не прервется, то состояние рецептора зафиксируется навечно или правильнее сказать пожизненно. Все это соответствует различным стадиям консолидации долгосрочной памяти.
Механизмы, которые управляют таким поведением метаботропных рецепторов подробно изучил и описал А. Н. Радченко (Информационные механизмы
Для памяти, основанной на пластичности синапсов, емкость считается достаточно просто. Пример такого расчета приведен на заглавной картинке. Заметим, что в нашей модели емкость памяти на дендритах, где-то в 1000 раз больше. И это еще не все.
В той пространственной структуре, что создается переплетением аксонов и дендритов работает идеология «избранных мест». То есть, чтобы рецепторы “были в деле” им необязательно относиться к тому дендриту, которому принадлежит синапс, через который передается сигнал. За счет того, что нейромедиаторы распространяются в межклеточном пространстве, “в деле” могут быть любые рецепторы, просто, геометрически находящиеся поблизости. Причем это, вообще, не обязательно должны быть рецепторы, принадлежащие именно нейронам.
Так, глиальные клетки коры, плазматические астроциты (рисунок ниже), имеют наборы тех же рецепторов, что и нейроны, а значит могут быть участниками механизмов памяти.
В коре количество астроцитов превышает количество нейронов. Астроциты коры имеют короткие ветвящиеся отростки. Этими отростками они охватывают находящиеся поблизости синапсы (рисунок ниже).
Трехсторонний синапс (R. D. Fields, B. Stevens-Graham, 2002)
Астроциты способны как усиливать реакцию синапса за счет выброса соответствующего медиатора, так и ослаблять ее за счет его поглощения или выброса связывающих нейромедиатор белков. Кроме того, астроциты способны выделять сигнальные молекулы, регулирующие выброс нейромедиатора аксоном. Концепция передачи сигналов между нейронами, учитывающая влияние астроцитов, называется трехсторонним синапсом (R. D. Fields, B. Stevens-Graham, 2002). Возможно, что трехсторонний синапс – это основной элемент, реализующий механизмы взаимной работы различных систем памяти.
Роль гиппокампа. Информация в идентификаторах. Кольцевые идентификаторы
В описываемой модели памяти чтобы на какой-либо зоне коры могли формироваться воспоминания кроме самой информационной картины на нее должны подаваться сигналы идентификаторов воспоминаний. Так как зоны коры выполняют различные функции, то уместно предположить, что и идентификаторы воспоминаний различаются для разных зон или групп зон.
Некоторые известные участки
В 1953 году пациенту, которого принято называть H.M. (Henry Molaison), при попытке вылечить эпилепсию было произведено двустороннее удаление гиппокампа (W. Scoviille, B. Milner, 1957). В результате у H.M. полностью исчезла способность что-либо запоминать. Он помнил все, что было с ним до операции, но что-либо новое вылетало у него из головы, как только переключалось его внимание. Кто смотрел фильм «Помни» («Memento») Кристофера Нолана, тот хорошо поймет, о чем разговор.
Henry Molaison
Случай H.M. достаточно уникален. В других случаях, связанных с удалением гиппокампа, где не было такого полного двустороннего разрушения, как у H.M., нарушения памяти либо были не столь ярко выражены, либо отсутствовали вовсе (W. Scoviille, B. Milner, 1957).
Полное удаление гиппокампа делает невозможным формирование новых воспоминаний. Нарушения в работе гиппокампа могут привести к синдрому Корсакова, который так же сводится к невозможности фиксировать текущие события, при сохранении старой памяти.
Достаточно распространенное представление о роли гиппокампа сводится к тому, что гиппокамп – это место хранение текущих воспоминаний, которые впоследствии перераспределяются по пространству коры. В описываемой модели роль гиппокампа иная, он создает уникальные ключи воспоминаний.
Созданные гиппокампом ключи через систему проекций распространяются на соответствующие зоны коры. Интерференция идентификаторов гиппокампа и информационных описаний создает память. При этом память сразу образуется «на своем месте» и не перемещается между гиппокампом и корой. Такое представление хорошо согласуется с экспериментальными данными. Действительно, удаление гиппокампа делает невозможным новое запоминание, так как исчезает генератор ключей воспоминаний. Старые воспоминания остаются нетронутыми, так как уже не зависят от гиппокампа. Их идентификаторы могут быть извлечены и использованы без задействования гиппокампа.
Но главные доводы в пользу предлагаемой роли гиппокампа связаны с функциями, которые обнаружены в гиппокампе и на первый взгляд не имеют прямого отношения к механизму памяти.
В 1971 году Джон О‘Киф открыл в гиппокампе клетки места (O’Keefe J., Dostrovsky J., 1971). Эти клетки реагируют подобно внутреннему навигатору. Если крысу поместить в длинный коридор, то по активности определенных клеток можно будет точно сказать, в каком его месте она находится. Причем реакция этих клеток не будет зависеть от того, как она попала в это место.
В 2005 году в гиппокампе были обнаружены нейроны, кодирующие положение в пространстве, образующие нечто наподобие координатной сетки (Hafting T., Fyhn M., Molden S., Moser M.B., Moser E.I., 2005).
В 2011 году оказалось, что в гиппокампе есть клетки, которые определенным образом кодируют временные интервалы. Их активность образует ритмические узоры, даже если ничего другого вокруг не происходит (Christopher J. MacDonald, Kyle Q. Lepage, Uri T. Eden, Howard Eichenbaum, 2011).
Хранение данных в виде пар «ключ-значение» создает ассоциативный массив. В ассоциативном массиве ключ имеет двойную функцию. С одной стороны, он является уникальным идентификатором, который позволяет отличить одну пару от другой, с другой стороны, сам ключ может нести информацию сильно облегчающую поиск. Например, файловая система компьютера может рассматриваться как ассоциативный массив. Значение – это информация, хранящаяся в файле, ключ – информация о файле. Информация о файле – это путь, указывающий на место хранения, имя файла, дата создания. Для фотографий дополнительна информация – геотеги, координаты места, где сделан снимок. Для музыкальных файлов – название альбома и имя исполнителя. Все эти данные о файлах образуют составные сложные ключи, которые не только однозначно идентифицируют файлы, но и позволяют вести поиск по любому из полей ключа или любому их сочетанию. Чем подробнее составлен ключ, тем гибче оказываются возможности поиска.
Так как
- Указание места действия;
- Указание положения в пространстве;
- Указание времени события;
- Набор понятий, советующих основному смыслу происходящего. Некий аналог ключевых слов, описывающих содержание статьи.
Очень похоже, что гиппокамп не просто работает с местом, положением в пространстве и временем, а использует эти данные именно для составления сложных информационных ключей воспоминаний. По крайней мере, это очень хорошо объясняет, почему столь разнообразные функции сошлись в одном месте. Причем месте, непосредственно отвечающем, за формирование памяти.
Особый интерес представляет временное кодирование. Человеческая память не просто позволяет вспоминать статические картины, она способна воспроизводить последовательность сцен с сохранением их хронологии. Соответственно, в систему кодирования памяти должна быть заложена такая возможность. Было показано, что в гиппокампе есть клетки времени, создающие ритмические узоры (Christopher J. MacDonald, Kyle Q. Lepage, Uri T. Eden, Howard Eichenbaum, 2011). Цикличность узоров наводит на мысль, что гиппокамп может использовать для создания временных полей идентификаторов событий те же приемы, что использует и человек для измерения времени.
Чтобы описать ход времени мы используем часы и календарь. В основе и того и другого лежат кольцевые идентификаторы. Минута состоит из 60 секунд. Это значит, что 60 идентификаторов последовательно сменяют друг друга, причем после 60 секунды опять следует первая. Аналогично с минутами в часе, часами в сутках, днями в месяцах, днями в неделях, месяцами в годах, годах в столетиях. То есть несколько кольцевых идентификаторов с разной периодичностью позволяют идентифицировать любой момент времени.
Похоже, что гиппокамп использует схожую систему временных кольцевых идентификаторов, что, собственно, и наблюдалось в опытах. Но, что особенно интересно, что такая система позволяет не только идентифицировать воспоминания, но и воспроизводить их последовательность. Если мы знаем правила следования идентификаторов друг за другом, то имея идентификатор одного события мы легко можем получить идентификатор события, следующего хронологически за ним и так далее.
Надо отметить, что кольцевые идентификаторы удобны не только для описания времени, но и для многих других ситуаций.
То, что мы описали в этой части, очень важно для понимания работы
Алексей Редозубов
Логика сознания. Вступление
Логика сознания. Часть 1. Волны в клеточном автомате
Логика сознания. Часть 2. Дендритные волны
Логика сознания. Часть 3. Голографическая память в клеточном автомате
Логика сознания. Часть 4. Секрет памяти мозга
Автор: AlexeyR