Сага о светодиодных лампах. Часть 4

в 16:21, , рубрики: Gauss LED, philips, обзор, Энергия и элементы питания

Сразу хочу сказать, что про опрос я не забыл. Его результаты учтены, лампы заказаны и едут ко мне. Едут, судя по всему, издалека, но тем не менее. Так что этот материал будет. Ну а пока, чтобы никто (и я в том числе) не скучал, предлагаю посмотреть еще на две лампочки из моих закромов.

Первой будет Philips 5W. Конкретно этой лампой очень интересовался один мой товарищ, и недавно, будучи в магазине, я ее увидел и ради интереса купил. Никакого кода или артикула ни на ней, ни на упаковке обнаружено не было, так что приведу фото коробки:

Сага о светодиодных лампах. Часть 4 - 1

Измеренный коэффициент пульсаций составил 13%, коэффициент мощности – 0.64. Неплохо. Посмотрим, как это достигнуто.

Сага о светодиодных лампах. Часть 4 - 2

Пластиковый рассеиватель снимается легко.

Сага о светодиодных лампах. Часть 4 - 3

Под ним видим матрицу из восьми полуваттных диодов, прикрученную на миллиметровой толщины алюминиевую деталь.

Сага о светодиодных лампах. Часть 4 - 4

Надо сказать, что добраться до драйвера оказалось неимоверно сложно, поскольку эта самая алюминиевая деталь оказалась запрессована в алюминиевый же стакан на манер консервной банки (и приварена?). Да, по факту корпус тоже почти целиком алюминиевый, пластик – только верхний слой. Мне пришлось использовать абразивный диск и ножницы по металлу.

Сага о светодиодных лампах. Часть 4 - 5

Сага о светодиодных лампах. Часть 4 - 6

К вопросу о том, зачем при использовании абразивного диска надо надевать защитные очки

Сага о светодиодных лампах. Часть 4 - 7

В целом конструкция очень прочная, крепкая, и, я бы сказал, вандалоустойчивая. Толстый алюминий наверняка хорошо отводит тепло.

Драйвер в конце концов был вынут:

Сага о светодиодных лампах. Часть 4 - 8

Сага о светодиодных лампах. Часть 4 - 9

Выглядит весьма сложно. Я порядком времени разбирался, как он устроен, и долго не верил своим глазам. Как вы думаете, какой из рассмотренных ранее топологий соответствует этот драйвер?

Правильный ответ – никакой. Здесь применено очень необычное для светодиодных ламп решение – по сути, это балласт для компактных люминесцентных ламп, адаптированный под светодиоды. Видимо, так было сделано для уменьшения затрат на переконфигурирование производственной линии и изменение схемы закупок компонентов – использовали то, что уже и так закупается миллионами.

Технические детали для интересующихся

Люминесцентные лампы по требованиям к питанию в достаточной степени похожи на светодиоды – им тоже требуется стабилизация тока. Канонично в качестве балласта для них используется катушка индуктивности. Однако в прошлой статье мы уже прикидывали, что в общем случае индуктивность дросселя для интересующего нас диапазона токов, частот и напряжений получается неприлично большой. Тем не менее, ее, в принципе, можно уменьшить за счет того, что реактивное сопротивление катушки растет с увеличением рабочей частоты. Таким образом, если мы преобразуем сетевые 50 Гц в несколько десятков килогерц, можно будет обойтись индуктивностью в районе нескольких миллигенри. Именно так и делают в компактных люминесцентных лампах.

Традиционная схема драйвера компактной люминесцентной лампы, с теми или иными вариациями встречающаяся в 90% случаев, состоит из выпрямителя, к которому подключен преобразователь, представляюший собой автогенерирующий полумост. К этой конструкции через дроссель подключается газоразрядная трубка, и все счастливо работает.

Драйвер рассматриваемой лампы сделан ровно так же, только вместо газоразрядной трубки присутствует блок со светодиодами (обозначен цифрой 1).

Сага о светодиодных лампах. Часть 4 - 10

Схему целиком срисовывать я не стал, для иллюстрации просто взял основу из reference design’а от Philips. Судя по присутствующим на плате деталям, совпадение в этой части если и не 100%, то, как минимум, очень велико.

Вот срисованная часть схемы, соответствующая блоку «1»:

Сага о светодиодных лампах. Часть 4 - 11

На тиристоре D6 собран узел защиты на случай обрыва в цепочке светодиодов (чтобы не взорвался C2). Можно было бы просто поставить C2 на большее напряжение (400 В), но это, во-первых, дороже, а, во вторых, конденсатор той же емкости на нужное напряжение имеет гораздо большие габариты.

Решение очень остроумное с точки зрения компромисса «оптимизация производства/параметры», но все же в смысле режима светодиодов и КПД не самое лучшее. Ну и с точки зрения философии схемотехники как-то странно.

Чтобы статья не была слишком короткой, давайте разберем что-нибудь еще. Вообще, из более-менее похожего у меня доныне был только Gauss 3W. Судя по надписям на упаковке, эта лампа тоже позиционируется как эквивалент 40 Вт лампе накаливания. Артикул на коробке – HA105201103.

Сага о светодиодных лампах. Часть 4 - 12

Формально, ставить рядом их, в общем, не совсем правильно – этот трехваттный Гаусс имеет цоколь E14 и вообще заявлен как декоративный. Тем не менее, если сходить по ссылке, написанной на коробке, можно прочесть, что варианты этой лампы для цоколя E27 тоже вроде как имеются.

Кстати о декоративности

Поскольку в этой лампе присутствуют точечные источники света, будучи вкручена в плафон с рисунком, она, в отличие от матовых, будет давать любимые многими фигурные тени, вроде таких:

Сага о светодиодных лампах. Часть 4 - 13

(фото любезно предоставлено моей знакомой).

Кто знает, может быть как декоративная она заявлена именно поэтому – форма у нее совершенно традиционная, да и никакого другого уклона в декоративность вроде как не наблюдается.

Измеренный коэффициент пульсаций – около 1%, коэффициент мощности – около 0.6.

Чтобы разобрать лампу, я варварски отковырял цоколь.

Сага о светодиодных лампах. Часть 4 - 14

Сага о светодиодных лампах. Часть 4 - 15

Как выяснилось, делать это было совсем необязательно. Видите резьбу на пластиковой детали? Она выкручивается. То есть, лампу можно не только разобрать, но и безболезненно собрать. Она ремонтопригодна!

В части драйвера никаких сюрпризов. Внутри стоит обратноходовый преобразователь на базе MT7952 (как раз тот случай, когда контроль тока осуществляется на первичной стороне).

Сага о светодиодных лампах. Часть 4 - 16

Сага о светодиодных лампах. Часть 4 - 17

Включение, судя по всему, типовое.

Сага о светодиодных лампах. Часть 4 - 18

На плате виден электролитический конденсатор марки BERYL. Не Rubycon, но все равно неплохо. Наработка таких конденсаторов на отказ, как утверждается, – порядка 10000 часов при температурах светодиодного светильника. Что радует, расположен он в более холодной части, ближе к цоколю. Вообще, электролитические конденсаторы – один из определяющих факторов долговечности светодиодных ламп, так что, если верить цифрам, приведенным по ссылке выше, эта лампа имеет все шансы работать долго и счастливо. Единственное, что может вызывать опасения – теплоотвод от светодиодов. Тем не менее, судя по нагреву корпуса, с ним тоже все более или менее в порядке («тычинки», на которых запаяны светодиоды, алюминиевые, это MCPCB).

В целом, сегодня мы с вами видели две достойные лампы. Philips, правда, изумил решением драйвера, но параметры у него неплохие (пульсации 13%, cos(φ) — около 0.6), да и качество самой конструкции отличное, как и положено для бренда такого уровня.

Лампа от Gauss – просто хорошая лампа (пульсации 1%, cos(φ) тоже около 0.6). Стандартная схемотехника, в меру качественные комплектующие. Но на мой вкус ее главная фишка – ремонтопригодность. Это на моей памяти первая лампа, которую можно не только разобрать, но и собрать. Например, есть возможность в рамках DIY перепаять конденсатор, когда он все-таки высохнет.

Автор: LampTester

Источник

* - обязательные к заполнению поля


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js