Международная научная группа раскрыла механизм теплопереноса в органических полупроводниках — материалах, используемых в OLED-экранах, гибкой электронике и солнечных панелях. Исследование показало, что до 70% тепла в этих материалах передаётся за счёт квантового туннелирования фононов, а не классического «перемещения частицами», как считалось ранее.
«Модели теплопроводности для кристаллов десятилетиями игнорировали волновую природу фононов. Мы доказали, что в органических полупроводниках с крупными молекулами, такими как пентацен, туннельный эффект становится доминирующим. Это объясняет, например, почему их теплопроводность почти не зависит от температуры», — подчёркивает руководитель исследования Эгберт Зойер.
Открытие стало возможным благодаря нестандартному применению машинного обучения: вместо анализа экспериментальных данных нейросети обучали на фундаментальных физических законах, что позволило выявить скрытые паттерны в атомных взаимодействиях.
Традиционные модели описывали теплоперенос как движение фононов, аналогичное диффузии газа. Однако для материалов с низкой теплопроводностью, таких как органические полупроводники, эти подходы давали ошибки до 300%. Алгоритмы машинного обучения, обработавшие данные 500+ молекулярных динамических симуляций, показали, что при размере молекул свыше 1.2 нм волновые эффекты начинают преобладать.
«Крупные молекулы колеблются с частотой ниже 100 Гц, что усиливает их волновые свойства. Тепло “перепрыгивает” между молекулами через резонанс, минуя прямое столкновение фононов», — поясняет первый автор работы Лукас Легенштейн.
Это открытие позволяет целенаправленно проектировать материалы. Например, добавление гибких боковых групп к молекулам усиливает туннелирование, снижая теплопроводность для термоэлектрических преобразователей. Напротив, компактные молекулярные структуры с жёсткими связями помогут улучшить теплоотвод в микроэлектронике.
«Теперь мы можем предсказать, как изменение структуры повлияет на теплоперенос, сократив разработку материалов с лет до месяцев», — отмечает Зойер.
Особые надежды учёные возлагают на применение метода к металлоорганическим каркасам. В этих пористых материалах, используемых для хранения водорода или улавливания CO2, локальный перегрев часто разрушает структуру. Управление туннельными эффектами позволит повысить их стабильность.
«Классические квантовые расчёты для таких систем занимают годы. Наш подход сокращает это до дней без потери точности», — говорят авторы.
Команда уже сотрудничает со стартапом по производству OLED-материалов, где внедрение новых принципов повысило энергоэффективность устройств на 15%. По словам Зойера, сочетание машинного обучения и фундаментальной физики открывает эру «материалов по требованию» — от гибких сенсоров для «умной» одежды до систем рекуперации тепла в промышленности.