Учёные из лаборатории исследований искусственного интеллекта (ИИ) T-Bank AI Research и студенты Университета МИСИС и МФТИ разработали, как они заявляют, самый точный в мире метод поиска на фото ранее неизвестных объектов с помощью ИИ. То есть, нейросеть научилась распознавать объекты, ранее не загруженные в базу данных. Исследователи отмечают, что риск ошибки при обработке и анализе изображений снизился более чем на 20%.
Метод получил название SDDE (Saliency-Diversified Deep Ensembles), его создатели считают, что он поможет развить сферу беспилотных транспортных средств и медицинской диагностики, где важно различать неопознанные элементы и графические артефакты. Открытие было представлено на Международной конференции по обработке изображений и компьютерному зрению (IEEE ICIP) в Абу-Даби, ОАЭ.
Для повышения эффективности распознавания объектов с помощью компьютерного зрения учёные применяют методы машинного обучения. Например, метод «глубокие ансамбли», который объединяет несколько нейросетей для решения задачи. Предыдущие разработки такого типа сталкивались с проблемой однородности ансамблей, что снижало качество распознавания.
Метод SDDE использует карты внимания, которые фокусируются на разных аспектах данных, что уменьшает схожесть моделей и повышает их общую точность. Также модель научилась при работе с изображениями учитывать не только те наборы данных, которые использовались при ее обучении, но и незнакомую ей информацию. Учёные являют, что метод SDDE продемонстрировал наилучшие результаты по сравнению со схожими алгоритмами.