Алгоритм, разработанный учеными из Университета Сан-Франциско (UCSF), ищет микроскопические кровоизлияния в
Источник: USFC
В своем исследовании специалисты использовали нейросеть типа FCN (fully convolutional network) — такие сети отличаются от классических сверточных нейросетей отсутствием полносвязных слоев (MLP). Это позволяет сети работать с изображениями произвольного размера и использовать меньше примеров для обучения.
Подробная статья о сетях типа FCN и прочих есть на Хабре (лонгрид).
Исследователи из UCSF «скормили» своей нейросети 4 396 снимков с результатами компьютерной томографии. Каждый снимок был снабжен подсказками для сети — кровоизлияние было обведено, чтобы алгоритм не отвлекался на случайные изменения и графический «шум». В итоге получилась точная нейросеть — она определяла едва заметные кровоизлияния в
Источник: USFC
К примеру, алгоритм нашел и подсветил две аномалии на рисунке выше: зеленым — малую субдуральную гематому, красным — субарахноидальное кровоизлияние.
Алгоритм, разработанный командой, за секунду определил, нет ли в результате сканирования головы каких-либо признаков кровоизлияния. Он также проследил подробные контуры аномалий в трехмерной структуре
В теории разработанный алгоритм может существенно упростить жизнь специалистам — одна трехмерная томограмма может превратиться в 30 снимков
Соавтор исследования, профессор радиологии в UCSF Эстер Юх пояснила, что для нейросети была высокая планка допустимой погрешности, так как ошибка в анализе может стоить человеку здоровья и жизни. «Люди не потерпят чего-то менее точного, чем человек», — поясняет Юх. Сейчас алгоритм тестируется на томограммах пациентов из медицинских центров из разных частей США.
Автор: Leonid_R