Как новые данные меняют наше понимание работы нейронов места
Первые подробности «встроенного в
На основании этих ранних открытий О’Киф со своим коллегой Линном Наделем предположили, что в гиппокампе содержится инвариантная репрезентация пространства, не зависящая от настроения или желаний. Они назвали её "когнитивной картой" [2]. С их точки зрения все нейроны места в
В последовавшие 40 лет другие исследователи – включая супружеский дуэт Эдварда и Мэй-Бритт Мозер – поддержали идею о том, что контуры гиппокампа работают в качестве встроенного GPS [3]. За их новаторскую работу, О’Киф и Мозерз были награждены Нобелевской премией 2014 года по физиологии или медицине. Можно было бы решить, что роль гиппокампа в ориентировании животных в пространстве была разгадана.
Но изучение
Физики веками бились над вопросом о том, абсолютно или относительно пространство, перед тем, как склониться на сторону относительности. Но только в последние годы при изучении
Подобные открытия служат точкой опоры для идеи о том, что
Ключевое возражение интерпретации абсолютного представления местоположения от О’Кифа и Надела появилось в работе прошлого года, авторами которой были Кимберли Стэченфелд, Мэтью Ботвинник и Сэмюель Гершман. [7] Эти исследователи, связанные с Google DeepMind, Принстонским университетом, Университетским колледжем Лондона и Гарвардским университетом, предположили, что гиппокамп представляет не абсолютное расположение животного, а то, куда с наибольшей вероятностью животное отправится в ближайшем будущем. Это представление учитывает предпочтительные перемещения и выученные привычки. С такой точки зрения гиппокамп – это предсказательная, а не абсолютная карта.
Предыдущие исследования показали, что активность нейронов места постоянно уменьшается, когда животное отдаляется от центра какого-то интересующего его места. О’Киф и Надель решили, что это признак того, что нейроны места представляют текущее местоположение животного. Но в рамках платформы, предложенной Стэченфелд и её коллегами, степень активности нейронов предлагается считать презентацией того, насколько вероятно то, что животное окажется в центре интересующего его места в следующий момент. Если оно уже в центре, тогда вероятность того, что оно будет там в следующий момент, достаточно высока, поэтому активность клеток также высокая. Если оно ушло так далеко от центра, что не сможет вернуться туда в следующий момент, то нейроны места неактивны.
Теории О’Кифа и Стэченфелд могут показаться сходными, и обе они вроде бы объясняют основные свойства активности нейронов места. Однако они делают разные предположения о природе пространственной карты в гиппокампе, и отделить одну от другой помогут только хитроумные эксперименты и проверки на вычислительных моделях. Стэченфелд, Ботвинник и Гершман достигли этого, повторно проанализировав данные из ранее опубликованных работ, и обнаружив, что некоторые из них их модель работы гиппокампа объяснить может, а традиционные модели – нет. Наиболее ярким из этих примеров служат данные из исследования, которое провели Эллис Алверне и её коллеги из Марселя, Франция. [8] Эти исследователи использовали «лабиринт с ответвлениями Толмана», в котором крысе необходимо бежать по единственному пути с начала до конца. В некоторых ситуациях путь был закрыт, что заставляло животное обходить препятствие по одному из двух С-образных коридоров.
Согласно интерпретации активности нейронов по О’Кифу с его когнитивной картой, нейрон, бывший активным, когда крыса была на развилке между прямым путём и обходным, должен активизироваться одинаково, вне зависимости от того, заблокирован этот путь или нет. Но в опыте наблюдалась другая картина. Эта клетка вела себя по-разному, в зависимости от наличия блокировки пути. На степень активности нейрона влиял предыдущий опыт крысы. Абсолютная карта не должна так работать. Более того, Стэченфелд с коллегами проделали компьютерные симуляции, чтобы показать, что активность нейронов места, которую наблюдали в своём опыте Алверне с коллегами, совпадает с их гипотезой предсказательной карты гораздо лучше, чем гипотеза О’Кифа о когнитивной карте.
Аргумент Стэченфелд против интерпретации О’Кифа-Наделя состоял в том, что нейроны места кодируют не абсолютную позицию, а только расположение относительно истории перемещений, опыта и поведенческих предпочтений. Всего через несколько месяцев ещё один набор исследований показал, что на активность нейронов места также влияет расположение других животных того же вида. [9, 10, 11] В работах, опубликованных в этом году, Нэчам Улановский из Вейсманновского института в Израели и Шигейоси Фуджисава из Института изучения
Результаты вновь расходятся с первоначальной интерпретацией активизации нейронов места, связывавшей их с абсолютным расположением в пространстве. Представление места в гиппокампе не просто отличается от абсолютного – на него, судя по всему, может влиять наблюдение за другими.
Активность нейронов места оказалась гораздо более сложной, чем считалось ранее. Классический взгляд на роль контуров гиппокампа в пространственной навигации, удостоенный нобелевской премии, оказался не полным описанием происходящего, а гиппокамп выполняет гораздо больше функций, чем простая инвариантная репрезентация расположения субъекта в пространстве.
Идея о предсказуемости нейронов места и влиянии на них обучения и поведения других животных может облегчить построение концепции, способной описать как роль гиппокампа в пространственном ориентировании, так и общепринятую роль в обучении и формировании памяти. С момента открытия того, что удаление гиппокампа может привести к невозможности формирования новых воспоминаний, его изучали, как один из важнейших регионов
2. O’Keefe, J. & Nadel, L. The Hippocampus as a Cognitive Map Oxford University Press (1978).
3. Rowland, D.C., Roudi, Y., Moser, M.B., & Moser E.I. Ten years of grid cells. Annual Review of Neuroscience 8, 19-40 (2016).
4. Ungerleider, L.G. & Mishkin, M. Two cortical visual systems. In Ingle, D.J, Goodale, M.A., & Mansfield, R.J.W. (Eds.) Analysis of Visual Behaviour MIT Press, Cambridge, MA (1982).
5. Vaziri, S., Carlson, E.T., Wang, Z., & Connor, C.E. A channel for 3D environmental shape in anterior inferotemporal cortex. Neuron 84, 55–62 (2014).
6. Hong, H., Yamins, D.L.K., Majaj, N.J., & Dicarlo, J.J. Explicit information for category-orthogonal object properties increases along the ventral stream. Nature Neuroscience 19, 613–622 (2016).
7. Stachenfeld, K.L., Botvinick, M.M., & Gershman, S.J. The hippocampus as a predictive map. Nature Neuroscience 20, 1643–1653 (2017).
8. Alvernhe, A., Save, E., & Poucet, B. Local remapping of place cell firing in the Tolman detour task. European Journal of Neuroscience 33, 1696–1705 (2011).
9. Omer, D.B., Maimon, S.R., Las, L., & Ulanovsky, N. “Social place-cells in the bat hippocampus. Science 359, 218–224 (2018).
10. Danjo, T., Toyoizumi, T., & Fujisawa, S. Spatial representations of self and other in the hippocampus. Science 359, 213–218 (2018).
11. Abbot, A. ‘Bat-Nav’ Reveals How the Brain Tracks Other Animals Nature News (2018).
12. Scoville, W.B. & Milner, B. Loss of recent memory after bilateral hippocampal lesions. Journal of Neurology, Neurosurgery & Psychiatry 20, 11–21 (1957).
Автор: SLY_G