Обнаружение сигнала в шумах

в 8:12, , рубрики: dsp, глонасс, математика, навигация, спектр, фурье, Электроника для начинающих

Обнаружение сигнала в шумах - 1
По роду своей деятельности мне приходится осуществлять контроль различных параметров наземных импульсно-фазовых радионавигационных систем (ИФРНС) «Чайка» и Loran-C. В этой статье я хочу поделиться одним из методов обнаружения времени прихода импульса ИФРНС при наличии шумов. Метод применим во многих задачах поиска сигнала известной формы.

Системы относятся к классу гиперболических систем и основаны на измерении разности времени прихода радиоимпульсов, принимаемых от цепочки передающих станций. В каждой цепочке одна из станций является ведущей, а остальные – ведомые. Все они точно синхронизируются.

Основной проблемой при детектировании сигналов ИФРНС является искажение формы принимаемых радиоимпульсов за счет наложения на поверхностную волну отраженных составляющих. Составляющие сигнала, которые не распространяются вдоль поверхности, проходят различные пути за различное время. Невозможно надежно предсказать время их прихода. Однако, очевидно, что отраженные составляющие сигнала распространяются медленнее поверхностной составляющей. Они также влияют на форму принимаемого сигнала. Форма принимаемого радиоимпульса может изменяться в зависимости от времени года, времени суток, а также от погодных условий и географической местности. Для выполнения задач навигации необходим алгоритм выделения начала поверхностной составляющей радиоимпульса.

Принимаемый сигнал xt (t) во временной области может быть представлен следующим уравнением:
Обнаружение сигнала в шумах - 2 (1)

где xg (t) – поверхностная составляющая, амплитуда и задержка n-ной отраженной составляющей определяются коэффициентами kn и tn, а e (t) — шумовая компонента.
Ниже изображены эталонный импульс ИФРНС и его спектр после прохождения полосового фильтра приемника. Частота дискретизации составляет 5 МГц.
Обнаружение сигнала в шумах - 3

Обнаружение сигнала в шумах - 4

В качестве примера рассмотрим смоделированный радиоимпульс, состоящий из поверхностной и отраженной составляющих. На рисунках ниже представлены графики, на котором изображена модель импульса, состоящая из двух составляющих смещенных друг от друга на 130 мкс. Амплитуда отраженной составляющей в 2 раза ниже амплитуды поверхностной составляющей.
Обнаружение сигнала в шумах - 5

Обнаружение сигнала в шумах - 6

Эквивалентное представление сигнала в частотной области описывается как:
Обнаружение сигнала в шумах - 7 (2)

где Xt (f), Xg (F) и E (f) — спектры сигналов xt (t), xg (t) и e (t).
Примем, что спектр эталонного нормированного сигнала системы «Лоран-С» или «Чайка» обозначается как X0 (f).
Очевидно, что
Обнаружение сигнала в шумах - 8 (3)

где kg — амплитуда поверхностной составляющей. Если выражение для Xg (f) из формулы (3) подставить в формулу (2) и разделить почленно все слагаемые на X0 (f), получится выражение
Обнаружение сигнала в шумах - 9 (4)

На рисунке ниже изображен график результата деления спектра сигнала на спектр эталона. Изображенный красным, график представляет собой горизонтальную пилообразную линию во всей области частот.
Обнаружение сигнала в шумах - 10

Обратное преобразование Фурье над выражением (4) дает формулу
Обнаружение сигнала в шумах - 11 (5)

Математический смысл выражения (5) заключается в том, что во временной области мы получаем пики в виде дельта-функций в моменты появления как поверхностной, так и всех отраженных составляющих сигнала, нормированные по амплитуде.
На рисунке ниже изображен график детектирования начала составляющих сигнала. Как видно из графика отношение амплитуд составляющих сигнала равно двум и расстояние между пиками составляет 130 мкс, что соответствует параметрам построенной модели.

Обнаружение сигнала в шумах - 12

Метод обычного деления спектров хорошо действует для идеальных сигналов. При добавлении в сигнал шумовой составляющей эффективность метода резко ухудшается. На рисунках ниже изображен график детектирования начала сигнала при соотношении сигнал/шум 25 дБ. Как видно из рисунков определение начала сигналов выполнить невозможно.
Обнаружение сигнала в шумах - 13
Обнаружение сигнала в шумах - 14

На графике спектра можно заметить, что внутри полосы шириной приблизительно 30 кГц с центром в точке 100 кГц результат деления спектров имеет горизонтальный пилообразный вид как при использовании метода деления спектров на идеальном не зашумленном сигнале. Использование прямоугольного окна шириной 30 кГц с центром в точке 100 кГц позволяет устранить влияние шумов перед операцией обратного преобразования Фурье. На рисунке ниже изображен график детектирования начала сигнала при использовании оконной фильтрации зашумленного сигнала. Два максимума графика позволяют обнаружить начало каждой из составляющих сигнала на фоне шума и также оценить отношение их амплитуд.
Обнаружение сигнала в шумах - 15

Метод деления спектров с применением оконного сглаживания эффективен при соотношении сигнал/шум выше 12 дБ. Наиболее эффективным типом окна признано прямоугольное окно с полосой 30 кГц. На рисунках ниже изображен реальный импульс цепочки Northern Sea of China Chain и график обнаружения его начала.

Обнаружение сигнала в шумах - 16
Обнаружение сигнала в шумах - 17

Оригинальная статья расположена здесь. Алгоритм в настоящее время применяется мной для контроля параметров станций ИФРНС Дальневосточного региона.

Автор: Dootch

Источник

* - обязательные к заполнению поля


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js