С недавних пор существует элегантная формула для вычисления числа Пи, которую в 1995 году впервые опубликовали Дэвид Бэйли, Питер Борвайн и Саймон Плафф:
Казалось бы: что в ней особенного — формул для вычисления Пи великое множество: от школьного метода Монте-Карло до труднопостижимого интеграла Пуассона и формулы Франсуа Виета из позднего Средневековья. Но именно на эту формулу стоит обратить особое внимание — она позволяет вычислить n-й знак числа пи без нахождения предыдущих. За информацией о том, как это работает, а также за готовым кодом на языке C, вычисляющим 1 000 000-ый знак, прошу под хабракат.
Как же работает алгоритм вычисления N-го знака Пи?
К примеру, если нам нужен 1000-ый шестнадцатеричный знак числа Пи, мы домножаем всю формулу на 16^1000, тем самым обращая множитель, стоящий перед скобками, в 16^(1000-k). При возведении в степень мы используем двоичный алгоритм возведения в степень или, как будет показано в примере ниже, возведение в степень по модулю. После этого вычисляем сумму нескольких членов ряда. Причём необязательно вычислять много: по мере возрастания k 16^(N-k) быстро убывает, так что, последующие члены не будут оказывать влияния на значение искомых цифр). Вот и вся магия — гениальная и простая.
Формула Бэйли-Борвайна-Плаффа была найдена Саймоном Плаффом при помощи алгоритма PSLQ, который был в 2000 году включён в список Top 10 Algorithms of the Century. Сам же алгоритм PSLQ был в свою очередь разработан Бэйли. Вот такой мексиканский сериал про математиков.
Кстати, время работы алгоритма — O(N), использование памяти — O(log N), где N — порядковый номер искомого знака.
Думаю, уместно будет привести код на языке Си, написанный непосредственно автором алгоритма, Дэвидом Бэйли:
/*
This program implements the BBP algorithm to generate a few hexadecimal
digits beginning immediately after a given position id, or in other words
beginning at position id + 1. On most systems using IEEE 64-bit floating-
point arithmetic, this code works correctly so long as d is less than
approximately 1.18 x 10^7. If 80-bit arithmetic can be employed, this limit
is significantly higher. Whatever arithmetic is used, results for a given
position id can be checked by repeating with id-1 or id+1, and verifying
that the hex digits perfectly overlap with an offset of one, except possibly
for a few trailing digits. The resulting fractions are typically accurate
to at least 11 decimal digits, and to at least 9 hex digits.
*/
/* David H. Bailey 2006-09-08 */
#include <stdio.h>
#include <math.h>
main()
{
double pid, s1, s2, s3, s4;
double series (int m, int n);
void ihex (double x, int m, char c[]);
int id = 1000000;
#define NHX 16
char chx[NHX];
/* id is the digit position. Digits generated follow immediately after id. */
s1 = series (1, id);
s2 = series (4, id);
s3 = series (5, id);
s4 = series (6, id);
pid = 4. * s1 - 2. * s2 - s3 - s4;
pid = pid - (int) pid + 1.;
ihex (pid, NHX, chx);
printf (" position = %in fraction = %.15f n hex digits = %10.10sn",
id, pid, chx);
}
void ihex (double x, int nhx, char chx[])
/* This returns, in chx, the first nhx hex digits of the fraction of x. */
{
int i;
double y;
char hx[] = "0123456789ABCDEF";
y = fabs (x);
for (i = 0; i < nhx; i++){
y = 16. * (y - floor (y));
chx[i] = hx[(int) y];
}
}
double series (int m, int id)
/* This routine evaluates the series sum_k 16^(id-k)/(8*k+m)
using the modular exponentiation technique. */
{
int k;
double ak, eps, p, s, t;
double expm (double x, double y);
#define eps 1e-17
s = 0.;
/* Sum the series up to id. */
for (k = 0; k < id; k++){
ak = 8 * k + m;
p = id - k;
t = expm (p, ak);
s = s + t / ak;
s = s - (int) s;
}
/* Compute a few terms where k >= id. */
for (k = id; k <= id + 100; k++){
ak = 8 * k + m;
t = pow (16., (double) (id - k)) / ak;
if (t < eps) break;
s = s + t;
s = s - (int) s;
}
return s;
}
double expm (double p, double ak)
/* expm = 16^p mod ak. This routine uses the left-to-right binary
exponentiation scheme. */
{
int i, j;
double p1, pt, r;
#define ntp 25
static double tp[ntp];
static int tp1 = 0;
/* If this is the first call to expm, fill the power of two table tp. */
if (tp1 == 0) {
tp1 = 1;
tp[0] = 1.;
for (i = 1; i < ntp; i++) tp[i] = 2. * tp[i-1];
}
if (ak == 1.) return 0.;
/* Find the greatest power of two less than or equal to p. */
for (i = 0; i < ntp; i++) if (tp[i] > p) break;
pt = tp[i-1];
p1 = p;
r = 1.;
/* Perform binary exponentiation algorithm modulo ak. */
for (j = 1; j <= i; j++){
if (p1 >= pt){
r = 16. * r;
r = r - (int) (r / ak) * ak;
p1 = p1 - pt;
}
pt = 0.5 * pt;
if (pt >= 1.){
r = r * r;
r = r - (int) (r / ak) * ak;
}
}
return r;
}
Какие возможности это даёт? Например: мы можем создать систему распределённых вычислений, рассчитывающую число Пи и поставить всем Хабром новый рекорд по точности вычисления (который сейчас, к слову, составляет 10 триллионов знаков после запятой). Учитывая, что Пи — это иррациональное число, то есть, в его записи каждая следующая цифра непредсказуема, последовательности цифр из него можно использовать в генерации паролей и просто случайных чисел, или в криптографических алгоритмах (например, в хэшировании). Способов применения можно найти великое множество — надо только включить фантазию.
Больше информации по теме вы можете найти в статье самого Дэвида Бэйли, где он подробно рассказывает про алгоритм и его имплементацию (pdf);
И, похоже, вы только что прочитали первую русскоязычную статью об этом алгоритме в рунете — других я найти не смог.
Автор: oshibka404