Речь, как ни странно, пойдёт о использующем свёрточную сеть классификаторе текстов (векторизация отдельных слов — это уже другой вопрос). Код, тестовые данные и примеры их применения — на bitbucket (уперся в ограничения размера от github и предложение применить Git Large File Storage (LFS), пока не осилил предлагаемое решение).
Наборы данных
Использованы конвертированные наборы: http://www.daviddlewis.com/resources/testcollections/reuters21578/ (22000 записей), https://github.com/watson-developer-cloud/car-dashboard/blob/master/training/car_workspace.json (530 записей), https://github.com/watson-developer-cloud/natural-language-classifier-nodejs/blob/master/training/weather_data_train.csv (50 записей). Кстати, не отказался бы от подкинутого в комменты/ЛС (но лучше таки в комменты) набора текстов на русском.
Устройство сети
За основу взята одна реализация описанной тут сети: https://arxiv.org/abs/1408.5882. Код использованной реализации на https://github.com/alexander-rakhlin/CNN-for-Sentence-Classification-in-Keras.
В моём случае — на входе сети находятся векторы слов (использована gensim-я реализация word2vec). Структура сети изображена ниже:
Вкратце:
- Текст представляется как матрица вида word_count x word_vector_size. Векторы отдельных слов — от word2vec, о котором можно почитать, например, в этом посте. Так как заранее мне неизвестно, какой текст подсунет пользователь — беру длину 2 * N, где N — число векторов в длиннейшем тексте обучающей выборки. Да, ткнул пальцев в небо.
- Матрица обрабатывается свёрточными участками сети (на выходе получаем преобразованные признаки слова)
- Выделенные признаки обрабатываются полносвязным участком сети
Стоп слова отфильтровываю предварительно (на reuter-м dataset-е это не сказывалось, но в меньших по объему наборах — оказало влияние). Об этом ниже.
Установка необходимого ПО (keras/theano, cuda) в Windows
Установка для linux была ощутимо проще. Требовались:
- python3.5
- заголовочные файлы python (python-dev в debian)
- gcc
- cuda
- python-е библиотеки — те же, что и в списке ниже
В моём случае с win10 x64 примерная последовательность была следующей:
- Anaconda с python3.5 — https://www.continuum.io/downloads
- Cuda 8.0 — https://developer.nvidia.com/cuda-downloads. Можно запускать и на CPU (тогда достаточно gcc и следующие 4 шага не нужны), но на относительно крупных датасетах падание в скорости должно быть существенным (не проверял)
- Путь к nvcc добавлен в PATH (в противном случае — theano его не обнаружит)
- Visual Studio 2015 с C++, включая windows 10 kit (потребуется corecrt.h)
- Путь к cl.exe добавлен в PATH
- Путь к corecrt.exe в INCLUDE (в моём случае — C:Program Files (x86)Windows Kits10Include10.0.10240.0ucrt)
conda install mingw libpython
— gcc и libpython потребуется при компиляции сетки- ну и
pip install keras theano python-levenshtein gensim nltk
(возможно заведется и с заменой keras-го бэкенда с theano на tensorflow, но мной не проверялось) - в .theanorc указан следующий флаг для gcc:
[gcc]
cxxflags = -D_hypot=hypot
- Запустить python и выполнить
import nltk
nltk.download()
Обработка текста
На этой стадии происходит удаление стопслов, не вошедших в комбинации из «белого списка» (о нём далее) и векторизация оставшихся. Входные данные для применяемого алгоритма:
- язык — требуется nltk для токенизации и возвращения списка стопслов
- «белый список» комбинаций слов, в которых используются стопслова. Например — «on» отнесено к стопсловам, но [«turn», «on»] — уже другое дело
- векторы word2vec
Ну и алгоритм (вижу как минимум 2 возможных улучшения, но не осилил):
- Разбиваю входной текст на токены ntlk.tokenize-м (условно — «Hello, world!» преобразуется в [«hello», ",", «world», "!"])
- Отбрасываю токены, которых нет в word2vec-м словаре.
На самом деле — которых там нет и выделить схожий по расстоянию не вышло. Пока только расстояние Левенштейна, есть идея отфильтровывать токены с наименьшим расстоянием Левенштейна по расстоянию от их векторов до векторов, входящих в обучающую выборку - Выбрать токены:
- которых нет в списке стопслов (снизило ошибку на погодном датасете, но без следующего шага — очень испортило результат на «car_intents»-м).
- если токен в списке стопслов — проверить вхождение в текст последовательностей из белого списка, в которых он есть (условно — по нахождении «on» проверить наличие последовательностей из списка [[«turn», «on»]]). Если такая найдётся — всё же добавить его. Есть что улучшить — сейчас я проверяю (в нашем примере) наличие «turn», но оно же может и не относиться к данному «on».
- Заменить выбранные токены их векторами.
Кода нам, кода
import itertools
import json
import numpy
from gensim.models import Word2Vec
from pynlc.test_data import reuters_classes, word2vec, car_classes, weather_classes
from pynlc.text_classifier import TextClassifier
from pynlc.text_processor import TextProcessor
from sklearn.metrics import mean_squared_error
def classification_demo(data_path, train_before, test_before, train_epochs, test_labels_path, instantiated_test_labels_path, trained_path):
with open(data_path, 'r', encoding='utf-8') as data_source:
data = json.load(data_source)
texts = [item["text"] for item in data]
class_names = [item["classes"] for item in data]
train_texts = texts[:train_before]
train_classes = class_names[:train_before]
test_texts = texts[train_before:test_before]
test_classes = class_names[train_before:test_before]
text_processor = TextProcessor("english", [["turn", "on"], ["turn", "off"]], Word2Vec.load_word2vec_format(word2vec))
classifier = TextClassifier(text_processor)
classifier.train(train_texts, train_classes, train_epochs, True)
prediction = classifier.predict(test_texts)
with open(test_labels_path, "w", encoding="utf-8") as test_labels_output:
test_labels_output_lst = []
for i in range(0, len(prediction)):
test_labels_output_lst.append({
"real": test_classes[i],
"classified": prediction[i]
})
json.dump(test_labels_output_lst, test_labels_output)
instantiated_classifier = TextClassifier(text_processor, **classifier.config)
instantiated_prediction = instantiated_classifier.predict(test_texts)
with open(instantiated_test_labels_path, "w", encoding="utf-8") as instantiated_test_labels_output:
instantiated_test_labels_output_lst = []
for i in range(0, len(instantiated_prediction)):
instantiated_test_labels_output_lst.append({
"real": test_classes[i],
"classified": instantiated_prediction[i]
})
json.dump(instantiated_test_labels_output_lst, instantiated_test_labels_output)
with open(trained_path, "w", encoding="utf-8") as trained_output:
json.dump(classifier.config, trained_output, ensure_ascii=True)
def classification_error(files):
for name in files:
with open(name, "r", encoding="utf-8") as src:
data = json.load(src)
classes = []
real = []
for row in data:
classes.append(row["real"])
classified = row["classified"]
row_classes = list(classified.keys())
row_classes.sort()
real.append([classified[class_name] for class_name in row_classes])
labels = []
class_names = list(set(itertools.chain(*classes)))
class_names.sort()
for item_classes in classes:
labels.append([int(class_name in item_classes) for class_name in class_names])
real_np = numpy.array(real)
mse = mean_squared_error(numpy.array(labels), real_np)
print(name, mse)
if __name__ == '__main__':
print("Reuters:n")
classification_demo(reuters_classes, 10000, 15000, 10,
"reuters_test_labels.json", "reuters_car_test_labels.json",
"reuters_trained.json")
classification_error(["reuters_test_labels.json", "reuters_car_test_labels.json"])
print("Car intents:n")
classification_demo(car_classes, 400, 500, 20,
"car_test_labels.json", "instantiated_car_test_labels.json",
"car_trained.json")
classification_error(["cars_test_labels.json", "instantiated_cars_test_labels.json"])
print("Weather:n")
classification_demo(weather_classes, 40, 50, 30,
"weather_test_labels.json", "instantiated_weather_test_labels.json",
"weather_trained.json")
classification_error(["weather_test_labels.json", "instantiated_weather_test_labels.json"])
Здесь вы видите
- Подготовку данных
with open(data_path, 'r', encoding='utf-8') as data_source: data = json.load(data_source) texts = [item["text"] for item in data] class_names = [item["classes"] for item in data] train_texts = texts[:train_before] train_classes = class_names[:train_before] test_texts = texts[train_before:test_before] test_classes = class_names[train_before:test_before]
- Создание нового классификатора
text_processor = TextProcessor("english", [["turn", "on"], ["turn", "off"]], Word2Vec.load_word2vec_format(word2vec)) classifier = TextClassifier(text_processor)
- Его обучение
classifier.train(train_texts, train_classes, train_epochs, True)
- Предсказание классов для тестовой выборки и сохранение пар «настоящие классы»-«предсказанные вероятности классов»
prediction = classifier.predict(test_texts) with open(test_labels_path, "w", encoding="utf-8") as test_labels_output: test_labels_output_lst = [] for i in range(0, len(prediction)): test_labels_output_lst.append({ "real": test_classes[i], "classified": prediction[i] }) json.dump(test_labels_output_lst, test_labels_output)
- Создание нового экземпляра классификатора по конфигурации (dict, может быть сериализована в/десериализована из, например json)
instantiated_classifier = TextClassifier(text_processor, **classifier.config)
Выхлоп примерно таков:
C:Usersuserpynlc-envlibsite-packagesgensimutils.py:840: UserWarning: detected Windows; aliasing chunkize to chunkize_serial warnings.warn("detected Windows; aliasing chunkize to chunkize_serial") C:Usersuserpynlc-envlibsite-packagesgensimutils.py:1015: UserWarning: Pattern library is not installed, lemmatization won't be available. warnings.warn("Pattern library is not installed, lemmatization won't be available.") Using Theano backend. Using gpu device 0: GeForce GT 730 (CNMeM is disabled, cuDNN not available) Reuters: Train on 3000 samples, validate on 7000 samples Epoch 1/10 20/3000 [..............................] - ETA: 307s - loss: 0.6968 - acc: 0.5376 .... 3000/3000 [==============================] - 640s - loss: 0.0018 - acc: 0.9996 - val_loss: 0.0019 - val_acc: 0.9996 Epoch 8/10 20/3000 [..............................] - ETA: 323s - loss: 0.0012 - acc: 0.9994 ... 3000/3000 [==============================] - 635s - loss: 0.0012 - acc: 0.9997 - val_loss: 9.2200e-04 - val_acc: 0.9998 Epoch 9/10 20/3000 [..............................] - ETA: 315s - loss: 3.4387e-05 - acc: 1.0000 ... 3000/3000 [==============================] - 879s - loss: 0.0012 - acc: 0.9997 - val_loss: 0.0016 - val_acc: 0.9995 Epoch 10/10 20/3000 [..............................] - ETA: 327s - loss: 8.0144e-04 - acc: 0.9997 ... 3000/3000 [==============================] - 655s - loss: 0.0012 - acc: 0.9997 - val_loss: 7.4761e-04 - val_acc: 0.9998 reuters_test_labels.json 0.000151774189194 reuters_car_test_labels.json 0.000151774189194 Car intents: Train on 280 samples, validate on 120 samples Epoch 1/20 20/280 [=>............................] - ETA: 0s - loss: 0.6729 - acc: 0.5250 ... 280/280 [==============================] - 0s - loss: 0.2914 - acc: 0.8980 - val_loss: 0.2282 - val_acc: 0.9375 ... Epoch 19/20 20/280 [=>............................] - ETA: 0s - loss: 0.0552 - acc: 0.9857 ... 280/280 [==============================] - 0s - loss: 0.0464 - acc: 0.9842 - val_loss: 0.1647 - val_acc: 0.9494 Epoch 20/20 20/280 [=>............................] - ETA: 0s - loss: 0.0636 - acc: 0.9714 ... 280/280 [==============================] - 0s - loss: 0.0447 - acc: 0.9849 - val_loss: 0.1583 - val_acc: 0.9530 cars_test_labels.json 0.0520754688092 instantiated_cars_test_labels.json 0.0520754688092 Weather: Train on 28 samples, validate on 12 samples Epoch 1/30 20/28 [====================>.........] - ETA: 0s - loss: 0.6457 - acc: 0.6000 ... Epoch 29/30 20/28 [====================>.........] - ETA: 0s - loss: 0.0021 - acc: 1.0000 ... 28/28 [==============================] - 0s - loss: 0.0019 - acc: 1.0000 - val_loss: 0.1487 - val_acc: 0.9167 Epoch 30/30 ... 28/28 [==============================] - 0s - loss: 0.0018 - acc: 1.0000 - val_loss: 0.1517 - val_acc: 0.9167 weather_test_labels.json 0.0136964029149 instantiated_weather_test_labels.json 0.0136964029149
По ходу экспериментов с стопсловами:
- ошибка в reuter-м наборе оставалась сравнима вне зависимости от удаление/сохранения стопслов
- ошибка в weather-м — упала с 8% при удалении стопслов. Усложнение алгоритма не повлияло (т.к. комбинаций, при которых стопслово таки нужно сохранить тут нет).
- ошибка в car_intent-м — возросла примерно до 15% при удалении стопслов (например, условное «turn on» урезалось до «turn»). При добавлении обработки «белого списка» — вернулась на прежний уровень
Пример с запуском заранее обученного классификатора
Собственно, свойство TextClassifier.config — словарь, который можно отрендерить, например, в json и после восстановления из json-а — передать его элементы в конструктор TextClassifier-а. Например:
import json
from gensim.models import Word2Vec
from pynlc.test_data import word2vec
from pynlc import TextProcessor, TextClassifier
if __name__ == '__main__':
text_processor = TextProcessor("english", [["turn", "on"], ["turn", "off"]],
Word2Vec.load_word2vec_format(word2vec))
with open("weather_trained.json", "r", encoding="utf-8") as classifier_data_source:
classifier_data = json.load(classifier_data_source)
classifier = TextClassifier(text_processor, **classifier_data)
texts = [
"Will it be windy or rainy at evening?",
"How cold it'll be today?"
]
predictions = classifier.predict(texts)
for i in range(0, len(texts)):
print(texts[i])
print(predictions[i])
И его выхлоп:
C:Usersuserpynlc-envlibsite-packagesgensimutils.py:840: UserWarning: detected Windows; aliasing chunkize to chunkize_serial warnings.warn("detected Windows; aliasing chunkize to chunkize_serial") C:Usersuserpynlc-envlibsite-packagesgensimutils.py:1015: UserWarning: Pattern library is not installed, lemmatization won't be available. warnings.warn("Pattern library is not installed, lemmatization won't be available.") Using Theano backend. Will it be windy or rainy at evening? {'temperature': 0.039208538830280304, 'conditions': 0.9617446660995483} How cold it'll be today? {'temperature': 0.9986168146133423, 'conditions': 0.0016815820708870888}
И да, конфиг сети обученной на датасете от reuters — тут https://drive.google.com/file/d/0B7cY3wBgM-aBWGh3NmFjSGVHVzA/view?usp=sharing. Гигабайт сетки для 19Мб датасета, да :-)
Автор: alex4321