По итогу 70-ти лет исследований в области ИИ главный урок заключается в том, что общие вычислительные методы в конечном счёте наиболее эффективны. И с большим отрывом. Конечно, причина в законе Мура, точнее, в экспоненциальном падении стоимости вычислений.
Большинство исследований ИИ предполагали, что агенту доступны постоянные вычислительные ресурсы. В этом случае практически единственный способ повышения производительности — использование человеческих знаний. Но типичный исследовательский проект слишком краткосрочен, а через несколько лет производительность компьютеров неизбежно возрастает.
Стремясь к улучшению в краткосрочной перспективе, исследователи пытаются применить человеческие знания в предметной области, но в долгосрочной перспективе имеет значение только мощность вычислений. Эти две тенденции не должны противоречить друг другу, но на практике противоречат. Время, потраченное на одно направление, — это время, потерянное для другого. Есть психологические обязательства инвестировать в тот или иной подход. И внедрение знаний в предметной области имеет тенденцию усложнять систему таким образом, что она хуже подходит для использования общих вычислительных методов. Было много примеров, когда исследователи слишком поздно усваивали этот горький урок, и полезно рассмотреть некоторые из самых известных.
В компьютерных шахматах система, которая победила чемпиона мира Каспарова в 1997 году, была основана на глубоком поиске вариантов. Тогда большинство исследователей компьютерных шахмат с тревогой смотрели на эти методы, потому что они применяли человеческое понимание предметной области — особой структуры шахматной игры. Когда более простой, основанный на поиске, подход со специальным оборудованием и программным обеспечением оказался значительно более эффективным, эти исследователи отказались признавать поражение. Они сказали, что метод «грубой силы», возможно, сработал один раз, но не является общей стратегией. В любом случае, люди не так играют в шахматы. Эти исследователи хотели победы методов, основанных на человеческом понимании игры, но их ждало разочарование.
Аналогичная ситуация сложилась в исследованиях игры го, только с задержкой на 20 лет. Огромные первоначальные усилия были направлены на то, чтобы избежать поиска, а использовать человеческие предметные знания или особенности игры, но все эти усилия оказались бесполезными, когда был эффективно применён глубокий поиск вариантов с массивными параллельными вычислениями. Важным оказалось и самообучение для усвоения функции ценности, как и во многих других играх и даже в шахматах, хотя эта функция не играла большой роли в программе 1997 года, которая впервые победила чемпиона мира. Обучение в игре с самим собой и обучение в целом подобны поиску в том смысле, что позволяют использовать массивные параллельные вычисления. Поиск и обучение — наиболее важные применения вычислительной мощи в исследованиях ИИ. Как и в компьютерных шахматах, в разработке программы для игры го исследователи сначала сконцентрировались на применении человеческого понимания предметной области (что требовало меньше поиска), и гораздо позже пришёл большой успех, когда они применили поиск и обучение.
В 1970-е годы DARPA провела конкурс систем распознавания речи. Конкурсанты предложили множество специальных методов, которые использовали знание предметной области — знание слов, фонем, человеческого голосового тракта и т. д. С другой стороны, были представлены новые методы, более статистические по своему характеру. Они делали гораздо больше вычислений, основанных на скрытых марковских моделях (HMM). И опять статистические методы одержали победу над методами, основанными на знаниях предметной области. Это привело к значительным изменениям во всей обработке естественного языка. Постепенно с годами статистика и вычисления стали доминировать в этой области. Недавний рост глубокого обучения в распознавании речи — последний шаг в этом направлении. Методы глубокого обучения ещё меньше полагаются на человеческие знания и используют ещё больше вычислений вместе с обучением на огромных наборах данных. Это позволило значительно улучшить системы распознавания речи. Как и в играх, исследователи всегда пытались создавать системы, которые работают по образцу их собственных умов: они пытались перенести своё знание предметной области в свои системы. Но в конечном счёте это оказалось контрпродуктивным и стало колоссальной тратой времени, когда закон Мура сделал доступными массивные вычисления и были разработаны инструменты для их эффективного использования.
В компьютерном зрении аналогичная картина. Ранние методы рассматривали зрение как поиск границ объектов, обобщённых цилиндров или в терминах SIFT-признаков. Но сегодня всё это отброшено. Современные нейронные сети глубокого обучения используют только понятия свёртки и некоторых инвариантов, при этом работают намного лучше.
Это большой урок. В целом по отрасли мы ещё не до конца усвоили его, поскольку продолжаем совершать те же ошибки. Чтобы эффективно противостоять этому, следует понять, в чём привлекательность этих ошибок. Мы должны усвоить горький урок: построение модели человеческого разума не работает в долгосрочной перспективе. Горький урок основан на нескольких исторических наблюдениях:
- Исследователи часто пытались встроить свои знания в агентов ИИ
- Это всегда помогает в краткосрочной перспективе и лично удовлетворяет исследователя, но
- В долгосрочной перспективе такой подход упирается в потолок и даже тормозит дальнейший прогресс.
- Прорывной прогресс в конечном итоге приходит благодаря противоположному подходу, основанному на массивных вычислениях путём поиска и обучения.
Конечный успех окрашен горечью и часто не до конца принимается, потому что это победа над привлекательным, ориентированным на человека подходом.
Из этого горького опыта нужно извлечь один урок: нужно признать огромную силу общих методов, которые продолжают масштабироваться с увеличением вычислительной мощности, даже когда требуются огромные объёмы вычислений. Кажется, поиск и обучение способны неограниченно масштабироваться.
Второй общий момент, который следует извлечь из горького урока, заключается в том, что реальное человеческое
Автор: m1rko