Как мы преобразовывали человеческое тепло в электроэнергию

в 13:26, , рубрики: Блог компании НИТУ «МИСиС», гаджеты, материаловедение, МИСиС, Научно-популярное, физика

Ученые НИТУ «МИСиС» совместно с коллегами из Технологического университета Лулело (Швеция) и Йенского университета имени Фридриха Шиллера (Германия) разработали первый в мире термоэлектрический материал с упорядоченно расположенными нанотрубками.

Благодаря полимерной природе, он гибок, а добавка из нанотрубок в несколько раз повышает его электропроводность. В перспективе такой материал можно будет применять для зарядки мобильных устройств без дополнительного источника питания: один такой браслет или чехол позволил бы заряжать часы или телефон прямо от тепла человеческого тела. Статья о разработке опубликована в журнале Advanced Functional Materials.

Термоэлектрические материалы – химические соединения или сплавы металлов, которые способны конвертировать тепло в электроэнергию из-за разницы температурных в местах присоединения к пластине проводников. Этот эффект был открыт еще в 1821 году немецким физиком Томасом Зеебеком. Долгое время в качестве материалов для термогенераторов использовались различные сплавы. Однако они дают не очень большой КПД – порядка 10%. К тому же, для максимальной эффективности нагрев пластины должен быть порядка нескольких сотен градусов.

В последние годы ученые начали искать альтернативу термоэлектрикам на основе сплавов – и нашли ее в полимерных материалах. Такие материалы работают даже при комнатной температуре, нетоксичны, обладают низкой теплопроводностью (минимизируют рассеивание полученного тепла вовне). К тому же, полимеры, в отличие от сплавов металлов, очень гибкие – такому термогенератору можно придать практически любую требуемую форму.

Коллектив ученых кафедры Функциональных наносистем и высокотемпературных материалов НИТУ «МИСиС» совместно с коллегами из Технологического университета Лулело (Швеция) и Йенского университета имени Фридриха Шиллера (Германия) создали первую в мире модифицированную версию полимера с вытянутыми и упорядоченно расположенными нанотрубками. Ученые использовали один из наиболее перспективных полимеров – полиэтилендиокситиофен (ПЭДОТ). Он обладает высокой электропроводностью, которую при этом можно дополнительно усиливать за счет химических включений в полимерную матрицу.

image
(Вверху) Схематическое изображение процесса приготовления композита TE с использованием слоя PVB для переноса на изогнутых или гибких подложках. (Внизу) Композит на основе VA ‐ CNTF после успешной переноски на три различных подложки, включая сильно изогнутые поверхности и гибкие опоры. Эти изображения демонстрируют потенциал новых материалов в качестве строительных блоков для различных применений TE, включая конформное покрытие неправильных форм, точное нанесение на гибкие подложки и создание сгибаемых пленок.

Сначала был выращен вертикально ориентированный «лес» углеродных нанотрубок на полупроводниковой подложке, затем они были вытянуты по горизонтальной плоскости. Сверху нанотрубки «залили» полимером. Поскольку в процессе выращивания нанотрубки зачастую образуют скопления в одной точки (агломерации), для нейтрализации таких скоплений материал подвергали пост-обработке диметилсульфоксидом и этиленгликолем.

После полного цикла обработки фактор мощности материала возрос более чем в 4 раза, до ~92 µВт·mK-2.

По словам участника научной группы со стороны НИТУ «МИСиС», к. ф.-м. н., Хабиба Юсупова, при таких характеристиках материала изделия из него будут способны преобразовывать даже тепло человеческого тела (на контрасте с комнатной температурой) в полезную электроэнергию. Например, сделав браслет для часов или чехол для мобильного телефона из такого полимера, можно будет питать устройства на постоянной основе, без дополнительного источника электроэнергии.

Автор: vad_nes

Источник

* - обязательные к заполнению поля


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js