Раз уж идеология нейросетей в IT строилась с оглядкой на реальный прототип, о нем тоже иногда полезно вспомнить. Предлагаем посмотреть или почитать лекцию Ильи Захарова, выпускника кафедры психофизиологии факультета психологии МГУ. Илья объясняет, как можно анализировать сети в
Под катом — расшифровка и большинство слайдов.
То, о чем я буду рассказывать, меня скорее интересует с содержательной, а не с технической точки зрения и не в смысле деталей, которые касаются анализа данных. Я буду больше говорить о том, что нужно содержательно учитывать, когда вы обращаетесь к электроэнцефалографическим (ЭЭГ-) данным, но постараюсь по максимуму ответить и на более технические вопросы.
Я буду стремиться рассказать о таком большом и очень продуктивном, перспективном направлении в изучении
Некоторые вводные слова, чтобы у нас был общий контекст. Принципиальная сложность
Картинки справа — вы их часто видите где-то в интернете — не очень точные. Если бы нейроны были расположены настолько разрежено, как на картинках справа, наш
Какие успехи есть сейчас у людей, которые стараются изучать
Или наблюдаются некоторые различия в типах связей внутри
Любопытно, что недавно появилась статья, показавшая, что паттерн работы
Люди с разными моральными качествами отличаются друг от друга по тому, как у них в
Анализ неких сетевых характеристик
Сначала связи возникают в нервных клетках. Нервные клетки генерируют потенциалы действий. Потенциал действий — электрический заряд, который возникает в нервной клетке и благодаря которому из нее выделяется нейромедиатор. Он попадает в другую клетку, в ней генерируется разряд и т. д. Базово все связано электрохимической цепью. Снизу вы видите, как возникают эти одиночные потенциалы и потенциалы действия. Регистрируя активность достаточно большого числа нервных клеток и отслеживая то, когда в клетках возникают потенциалы действия, можно предсказывать, когда они будут возникать в других клетках. Все это делается статистически, верхние точки на рисунке слева — активность наличия потенциала действия в одном из нейронов какого-то из участков
Это не как такты в компьютере, но в некотором смысле речь идет о синхронизованной активности, которая точно существует в
Обработка на уровне отдельных нервных клеток — безумно интересная вещь, но я в ней совершенно не разбираюсь. Это довольно большой отдельный мир, я буду говорить не о нем.
Другой существующий уровень. Наверняка вы видели такие картинки, или это предпоследний альбом группы Muse, где из разных областей
Исследователи делают всё перечисленное с помощью МРТ — и делают уже довольно долго. Уже есть некоторая любопытная информация, как
Людей с разными патологиями и тому подобным чаще всего характеризует именно распределение данных узлов или набор каких-то изменений. Я буду говорить, опять же, о другом, но перед вами еще один из уровней того, как это можно изучать.
Крайне интересной мне кажется другая область. Она обладает плюсами подхода, связанного с регистрацией отдельных нейронов или больших групп нейронов, а также плюсами крупного подхода, когда мы смотрим на весь
В чем минусы первого случая, когда мы работаем только с нейронами? Основной минус — мы не можем посмотреть нейроны сразу во всем
Одновременно такой подход позволяет смотреть на очень быстрые и детальные процессы, связанные с обработкой информации в
Я буду рассказывать, как сети в
Как все устроено? В первую очередь работают методы электроэнцефалограммы (ЭЭГ) и магнитоэнцефалограммы — к ней всё описанное тоже применимо. Наверняка в поликлинике кому-то делали ЭЭГ. Вам на голову ставят какое-то количество электродов. Сейчас в нейронаучных исследованиях ставят 64 или 128 электродов, довольно крупно покрывая вашу голову точками, отдельными отведениями, с которых регистрируется некоторая суммарная электрическая активность. Мы не знаем детально, откуда она берется. У нас есть модели, но мы не можем воссоздать рождение этой активности на уровне нервных клеток. Однако мы точно знаем, что она связана с какими-то функциональными процессами в
С каждой точки мы регистрируем некую колебательную активность. Вы наверняка слышали про мозговые ритмы — они как раз и являются составными частями указанной активности. Ритмы — это просто отдельно взятые частотные диапазоны общего колебательного процесса. На основании частотных характеристик выделяют альфа-, бета-, тета-ритм.
Мы говорим про анализ сетей в
Тот факт, что электроды будут между собой коррелировать, связан с передачей информации. Почему мы так думаем? Это кажется логичным, но когда речь заходит о
В данном случае мы из каких-то более детальных клеточных экспериментов знаем: если у нас в
Если мы перережем связи между этими двумя участками — мы идем по рисунку сверху вниз, вертикальные линии означают, что мы перерезали связи, — то они сначала ухудшатся. А если мы вообще отодвинем волокна друг от друга — связи пропадут. Мы потеряли ритмическую колебательную активность в
Мы небезосновательно считаем, что синхронизация между двумя точками — действительно показатель связи между двумя областями в
При этом нужно учитывать, что даже на таком уровне возникают некие физиологические детали. Я расскажу про некоторые типы измерений, но сразу предупрежу: они принципиально делятся на два больших класса. Первый класс — non-directed-измерения, которые не делают никаких предположений относительно направленности связей между двумя точками. В данном случае мы совершенно не рассматривали, откуда и куда течет информация. В
Одновременно мы знаем, что вообще — и это достаточно логично —
На картинке видно, что есть примеры, где связи расположены в одну и в разные стороны. Перед вами
Оценивать можно в основном две характеристики электроэнцефалографического сигнала. В первую очередь мы оцениваем, насколько существует общий колебательный процесс. И тут, учитывая, что речь идет о колебательном процессе, крайне важным оказывается оценить то, насколько в нем совпадают фазы сигнала.
Простое совпадение фаз для нас — как раз крайне важный показатель. В данном случае можно оценивать фазы…
Если кто-то интересуется деталями, хочет подробнее посмотреть — в конце будет список литературы. Там есть очень внятный обзор — очень внятный для человека даже без какого-то предварительного опыта.
У нас может быть некоторое количество вариантов происходящего с фазами в
Базово фазовую синхронизацию оценивают с помощью разложения сигнала на комплексные числа и выделения действительной и мнимой части. В первую очередь оценивают как раз мнимую часть. В этом я разбираюсь довольно плохо, это далеко от того, что делаю как раз. Так что тут я скорее адресую вас к ссылкам.
Другая важная вещь, которую можно делать, — оценивать не столько фазовые характеристики сигнала, сколько амплитудные или частотные характеристики безотносительно фазы.
Тут в первую очередь существует метод анализа когерентности. По сути, речь идет просто о подсчете корреляций между парой электродов с некоторой небольшой поправкой. Ну и еще нужно принимать во внимание довольно серьезные фазовые изменения в разных частотных диапазонах, возникающие за счет того, что у нас длина волны получается разной. С учетом указанных изменений образуются некоторые усложнения процедуры phase locking value, когда мы еще нормализуем частотные спектры на длину волны.
Здесь мы — и в случае оценки фазовой синхронизации, и в случае оценки когерентности — получаем сигналы, которые на самом деле не чувствительны к направлению передачи информации. Мы просто оцениваем то, что сигналы между собой взаимосвязаны.
Понятно, что данные методы были разработаны еще в 60-70-х годах и что сейчас существуют некоторые чуть более усложненные характеристики. Например, если имеется большое количество сигнала, мы можем не просто брать фазу, а смотреть распределение фаз одного и другого сигнала и оценивать сходство между ними. Речь идет о важном сравнении, которое помогает нам производить более точную оценку, но все равно не решает проблемы направленности связей.
Другой большой тип — методы, основанные на изначальных предположениях о том, что сигнал течет из одной стороны в другую. В первую очередь к таким относится метод granger causality. Указанные методы были разработаны для экономики, но они активно применяются и в нейронауке. Мы пытаемся на основании активности в одном месте предсказать, что будет происходить в другом электроде, узнать, насколько велика предсказательная сила, чтобы это понять. И можно делать некоторый временной сдвиг, смотреть, насколько происходящее в одном месте приводит к происходящему где-то еще.
Я больше хотел рассказать, что еще нужно учитывать, когда мы анализируем вещи подобного рода. Когда мы говорим о связи между точками, нужно принимать во внимание, что эта связь имеет некоторые технические характеристики и некоторые особенности того, как информация от точек поступает к нам. Например, крайне важным оказывается помнить, что когда мы смотрим на какую-то электрическую активность, речь всегда идет о разности потенциалов. А если имеется разность потенциалов, то одна точка уже есть. Одновременно есть и другая точка на голове, которая называется референтной. Относительно нее мы смотрим разность сигнала. В этом смысле, взяв некоторую общую точку для всех имеющихся в
Другая проблема связана вот с чем: когда мы видим связь между двумя точками, мы не знаем, что это, может быть, результат связи их обоих с третьей точкой.
В первую очередь дело в том, что мы смотрим активность на поверхности черепа, хотя источник активности в
Указанные методы подсчета активностей — при которых мы правильно учитываем, что активности идут из каких-то общих источников, учитываем технические характеристики сигнала — вполне понятны. Описано, о чем нужно думать. Принимая во внимание теоретические вещи, касающиеся того, куда должен или не должен течь сигнал, мы приходим к задаче, которая может оказаться гораздо ближе всем вам. Или не всем, но, говоря об этом в Яндексе, я думаю, что здесь больше специалистов именно в данном вопросе.
На самом деле мы в итоге получаем некоторую сеть, граф связей между парой точек. Плюс мы можем количественно оценить силу этих связей с помощью уже описанных мной методов. Речь идет об области, которая исследована еще недостаточно активно. Можно в нее гораздо сильнее вложиться и придумать, что интересного сделать, когда мы уже получили некоторое количество связей между точками. И тут начинается все самое интересное. Эта область совершенно открыта для вас.
Вот список литературы.
Если что, можно мне написать, я всё перечисленное вышлю. Если у вас есть какой-то интерес к данной области, мы в лаборатории всегда открыты к сотрудничеству. Спасибо.
Автор: Яндекс