В связи с известными событиями, а именно, началом работы ровера Curiosity на красной планете, вновь обострились конспирологические настроения в интернетах, равно как и среди обитателей хабра.
Где-то здесь же упоминалось о некой, согласно словам комментаторов, «желтоватой» статье, с объяснением, что небо на любой планете не может быть постоянно красноватым. Конкретно той статьи не видел, так что если она на хабре — то заранее пардон за потенциальную возможность дублирования.
А теперь — ближе к делу. Просто вкратце расскажу о явлении рассеяния электромагнитных волн. Обойдусь по возможности без формул.
Рассеяние Рэлея
В 1871 году Джон Уильям Стретт, более известный как лорд Рэлей (хотя именно в этом году таковым он ещё не был), предложил описание рассеяния на основе классической электродинамической теории, которое впоследствии прекрасно объяснило голубой цвет неба днём и красный — на закате.
Сам процесс происходит тогда, когда электромагнитная волна распространяется в среде, заполненной какими-либо мелкими частицами. В случае в моделью Рэлея, она работает, если размер этих частиц много меньше длины волны. Применительно к видимому свету, таковыми оказываются размеры молекул газов, составляющих атмосферу планеты, что и определяет наблюдаемые характеристики явления.
Итак, длина волны много больше размера частицы. По этой причине можно принять, что частица пребывает в однородном поле, меняющемся во времени с частотой колебаний волны, и в результате этого частица, как и любой материальный объект, помещённый в поле, приобретает электрический P и магнитный M момент. То бишь, становится диполем, создающим собственное электрическое и магнитное поле. При этом величина моментов, естественно, зависит от времени — они осциллируют с той же частотой, что и волна.
А осциллирующий диполь заведомо является излучателем (на этом принципе работает заметная часть антенн передатчиков), и переизлучает падающую на него энергию — именно таков механизм рассеяния в модели Рэлея. Амплитуда рассеянной волны на больших (много больших длины волны) расстояниях пропорциональна квадрату частоты:
Также она определяется и направлением n, в котором происходит переизлучение, и расстоянием до диполя R, однако в настоящий момент нас это не интересует.
Интенсивность же равна квадрату амплитуды, и потому пропорциональна уже четвёртой степени частоты (формула для интенсивности излучения в бесконечно малый телесный угол):
Таким образом, рассеяние резко усиливается по мере роста частоты волны (сдвиге в фиолетовую область спектра). Голубой же и синий цвет неба (а не фиолетовый) обусловлен уже эффектами усиления поглощения на высокой частоте. На небольших частотах поглощение пропорционально кубу частоты, а на больших — пятой степени, и становится преобладающим процессом (между делом, именно благодаря этому планета с атмосферой эффективно защищена от внешнего рентгеновского и гамма-излучения не слишком высоких энергий).
И рассеяние, и поглощение электромагнитных волн в атмосфере резко усиливается по мере уменьшения длины волны. Таким образом, цвет неба при прочих равных условиях полностью определяется соотношением этих двух факторов, и ничем иным.
На Земле атмосфера достаточно плотная, и потому поглощение в ней достаточно сильное. Потому днём, когда солнце высоко, его лучи проходят сравнительно короткий путь в атмосфере, так что коротковолновая часть спектра оказывается не сильно поглощена. Поскольку она рассеивается сильнее, то она и является преобладающей — небо становится голубым. А на восходе и закате свет от солнца идёт по сути параллельно локальному участку поверхности планеты, и путь его оказывается в разы длиннее — в результате за счёт поглощения отфильтровываются не только синие и голубые оттенки, но и зелёные с жёлтыми.
Кроме того, свет на заре входит в атмосферу под очень острым углом, что определяет некоторую роль преломления и дисперсии (происходит разложение в спектр) — красная часть спектра преломляется слабее и проходит больший путь вдоль поверхности.
При сравнительно малой плотности атмосферы, как на Марсе, следует ожидать, в первую очередь, заметного снижения интенсивности процесса рассеяния. Однако небо от этого становится только темнее, но не краснеет.
Рассеяние Ми
Модель Рэлея, как и следовало ожидать, может быть получена из общей теории в приближении малых размеров рассеивающих частиц. Рассеяние электромагнитной волны на сферах (в оригинальной работе, 1908 г.) произвольного размера описывается в теории Ми (однако часто её упоминают только в контексте ситуации больших частиц).
Итак, в случае, если частицы много больше длины волны, срабатывает обратное рэлеевскому приближение теории Ми. Причина возникновения рассеяния та же самая — переизлучение энергии падающей волны колеблющимися диполями. Подробное его описание сделать весьма сложно, поскольку для этого требуется полностью решить систему уравнений Максвелла для волны в пространстве, заполненном такими рассеивающими объектам. Потому часто при рассказе о данной теории ограничиваются лишь перечислением её особенностей в сравнении с рэлеевской задачей. Воспользуемся проторенной дорожкой и укажем наиболее характерные моменты:
- Сложность описания вызвана тем, что при больших размерах частиц приближение однородного поля становится недопустимым.
- При больших размерах частиц интенсивность рассеяния практически не зависит от длины волны.
Итак, вторая особенность оказывается самой существенной. Она объясняет белый и серый цвет облаков, тумана, пыли, изменение цвета неба от зенита к горизонту.
Исходя из этого, небо на Марсе должно быть серо-голубым. Голубым благодаря рассеянию Рэлея, и серым благодаря постоянно висящей в атмосфере пыли. Последнее обеспечивается низкой гравитацией и сухостью породы в совокупности с сильными ветрами.
А оранжевый и красный оттенок неба может наблюдаться только во время бурь. Как, впрочем, и на Земле происходит (на картинке из википедии — песчаная буря в Сиднее).
Во время пылевых бурь достаточно мелкие частички пыли в большой концентрации, особенно если они подняты на несколько километров над поверхностью, резко усиливают поглощение коротковолновой части спектра, и преобладающим становится как раз красный оттенок. Аналогичное явление может наблюдаться при мощных извержениях вулканов. Наглядным историческим примером служат описанные во время извержения Кракатау (1883 г.) необычайно интенсивные оттенки зорь.
Автор: kbtsiberkin