Привет гиктаймс! Я решил опубликовать по частям свое руководство по материалам, используемым не только в электротехнике, но и вообще в технике, в том числе самодельщиками. С описанием, примерами применения, заметками по работе. Руководство написано максимально просто, и будет понятно всем, от школьника до пенсионера.
В этой части начинаем разбирать проводники — Серебро, Медь, Алюминий.
Добро пожаловать под кат (ТРАФИК)
Введение, которое обычно никто не читает
Ковыряясь в поисках ответов на свои вопросы в разных учебниках по материаловедению, методичках, научпоп книгах я ужасался, насколько академический стиль изложения возводит стену между желающим узнать и знаниями. Насколько стремление авторов обойти острые грани, тёмные места превращает учебники в однородную бескрайнюю пустыню скуки и отчаяния. При этом запредельный уровень абстракции делает крайне сложным для неофита использование полученных знаний в практике. Поэтому я решил сделать свое руководство, с блекджеком и блудными девицами.
Это руководство — живое, по мере получения новых материалов, уточнений, комментариев от вас, дорогие читатели оно будет дополняться, изменяться, становиться лучше. Всегда самая свежая версия руководства лежит у меня на сайте в бложике Я обеими руками поддерживаю движение Open Source и Open Hardware, считаю, что обмен знаниями должен быть свободным, это принесет пользу для всех, поэтому пособие распространяется под лицензией Creative Commons 3.0 BY-NC-SA, что значит, вы можете делать с ним что угодно: выкладывать, распространять, модифицировать, соблюдая только три ограничения:
- Ссылка на меня обязательна (в.т.ч. производных работах).
- Зарабатывать на моем пособии без договоренности со мной нельзя (запрет на использование в коммерческих целях).
- Все производные работы должны распространяться на тех же условиях.
Плюшки данного пособия:
- Весь текст написан мной, и дополнен замечательными людьми, упомянутыми в разделе Благодарности. Я не включал информацию, в достоверности или актуальности которой я бы сомневался. Поэтому доля брехни по тексту в среднем ниже, чем в маркетинговых текстах перепродавцов-поставщиков, но выше, чем в хорошем советском учебнике.
- Большую часть материалов я хотя бы щупал, использовал в своих конструкциях, а не видел только на картинке.
- Пособие полностью (Чтобы быть до конца честным — за исключением одной картинки, которую пришлось рисовать в чем умел.) подготовлено с использованием OpenSource продуктов (Linux, GIMP, LibreOffice, context). Просто из спортивного интереса.
- Некоторые разделы имеют пункт «Источники» — советы по поиску материалов — где купить, под какими названиями искать. Конечно, всё можно купить на Алиэкспресс и на Ebay, поэтому такой вариант не указывается. Пункт может быть полезен если материал нужен «здесь и сейчас».
Публикуя руководство здесь я очень надеюсь на обилие конструктивной критики и дополнений от вас, дорогие читатели.
*Серебро
*Медь
*Алюминий
*Железо
*Золото
*Никель
*Вольфрам
*Ртуть
Так себе проводники:
*Углерод
*Нихромы
*Сплавы для изготовления термостабильных сопротивлений
*Припои
*Олово
*Легкоплавкие припои
Прочие проводники
*Термопарные сплавы
*Оксид Индия-Олова
Диэлектрики (Совсем не проводники):
*Неорганические диэлектрики
**Фарфор
**Стекло
**Слюда
**Алюмооксидные керамики
**Асбест
**Вода
*Органические диэлектрики полусинтетические
**Бумага, картон
**Шёлк
**Воск, парафин
**Трансформаторное масло
**Фанера, ДСП
*Органические диэлектрики синтетические
**Материалы на базе фенол-формальдегидных смол
**Карболит (бакелит)
**Гетинакс
**Текстолит
**Стеклотекстолит
**Лакоткань
**Резина
**Эбонит
**Полиэтилен
**Полипропилен
**Полистирол, АБС-пластик
**Фторопласт-4 (политетрафторэтилен PTFE)
**Поливинилхлорид — ПВХ
**Полиэтилентерефталат (ПЭТФ)
**Силиконы
**Полиимид
**Полиамиды
**Полиметилметакрилат — ПММА
**Поликарбонат
*График истории промышленного применения полимеров
*Изоленты
**Прорезиненная тканевая изолента
**Тканевые изоленты
**Резиновые самовулканизирующиеся изоленты
**Силиконовые самослипающиеся ленты
**Полиимидная лента
**ПВХ изоленты
**Канцелярская липкая лента «скотч»
*Изоляционные трубки
**Трубка из ПВХ — «кембрик»
**Фторопластовая трубка
**Стеклотканевая с силиконом
**Термоусадочная трубка
*Дополнительные сведения о полимерах
Поехали!
Проводники
Двадцатый век — век пластмасс. До появления широкого спектра синтетических полимерных материалов, человек использовал в конструировании металлы и материалы природного происхождения — дерево, кожу и т.д. Сегодня мы завалены пластмассовыми изделиями, начиная от одноразовой посуды, заканчивая тяжелонагруженными деталями двигателей автомобилей. Пластмассы во многом превосходят металлы, но никогда не вытеснят их полностью, поэтому рассказ начнется с металлов. Металлам посвящены сотни книг, дисциплина, посвященная им, называется «металловедение».
Нас интересуют металлы с точки зрения электронной техники. Как проводники, как часть электронных приборов. Все остальные применения — например такие, как конструкционные материалы, в данное пособие пока не вошли.
Главное для электронной техники свойство металлов — это способность хорошо проводить электрический ток. Посмотрим на таблицу удельного сопротивления различных металлов:
Металл | Удельное сопротивление Ом*мм2/м |
---|---|
Серебро | 0,015...0,0162 |
Медь | 0,01724...0,018 |
Золото | 0,023 |
Алюминий | 0,0262...0,0295 |
Иридий | 0,0474 |
Вольфрам | 0,053...0,055 |
Молибден | 0,054 |
Цинк | 0,059 |
Никель | 0,087 |
Железо | 0,098 |
Платина | 0,107 |
Олово | 0,12 |
Свинец | 0,217...0,227 |
Титан | 0,5562...0,7837 |
Висмут | 1,2 |
Видим лидеров нашего списка: Ag, Cu, Au, Al.
Серебро
Ag — Серебро. Драгоценный металл. Серебро — самый дешевый из драгоценных металлов, но, тем не менее, слишком дорог, чтобы делать из него провода. На 5% лучшая электропроводность по сравнению с медью, при разнице в цене почти в 100 раз.
Примеры применения
В виде покрытий проводников в СВЧ технике. Ток высокой частоты, из-за скинэффекта течет по поверхности проводника, а не в его толще, поэтому тонкое покрытие волновода серебром дает бОльший прирост проводимости, чем покрытие серебром проводника для постоянного тока.
В сплавах контактных групп. Контакты силовых, сигнальных реле, рубильников, выключателей чаще всего изготовлены из сплава с содержанием серебра. Переходное сопротивление такого контакта получается ниже медного, он меньше подвержен окислению. Так как контакт обычно миниатюрен, стоимость этой малой добавки серебра к стоимости изделия незначительно. Хотя при утилизации большого количества реле, стоимость серебра делает целесообразным работу бокорезами по отделению контактов в кучку для последующего аффинажа.
Контакты силового реле на 16 Ампер. Согласно документации производителя
контакты содержат серебро и кадмий.
Различные реле. Верхнее реле имеет даже посеребренный корпус с характерной патиной. Содержание драгметаллов в изделиях, выпущенных в СССР было указано в паспортах на изделия.
В качестве присадки в припоях. Качественные припои (как твёрдые так и мягкие) часто содержат серебро.
Проводящие покрытия на диэлектриках. Например, для получения контактной площадки на керамике, на неё наносится суспензия из серебряных частиц с последующим запеканием в печи (метод «вжигания»).
Компонент электропроводящих клеев и красок. Электропроводящие чернила часто
содержат суспензию серебряных частиц. По мере высыхания таких чернил, растворитель
испаряется, частицы в растворе оказываются всё ближе, слипаясь и создавая проводящие
мостики, по которым может протекать ток. Хорошее видео 7 с рецептом по созданию таких
чернил.
Недостатки
Несмотря на то, что серебро — благородный металл, он окисляется в среде с содержанием
серы:
4Ag + 2H2S + O2 → 2Ag2S + 2H2O
Образуется темный налет — «патина». Также источником серы может служить резина, по-
этому провод в резиновой изоляции и посеребренные контакты — плохое сочетание.
Потемневшее серебро можно очистить химически. В отличии от чистки абразивными пастами (в том числе зубной пастой) это самый нежный способ чистки, не оставляющий царапин.
Медь
Cu — медь. Основной металл проводников тока. Обмотки электродвигателей, провода в изоляции, шины, гибкие проводники — чаще всего это именно медь. Медь нетрудно узнать по характерному красноватому цвету. Медь достаточно устойчива к коррозии.
Примеры применения
Провода. Основное применение меди в чистом виде. Любые добавки снижают электропроводность, поэтому сердцевина проводов обычно — чистейшая медь.
Гибкие многожильные провода различного сечения.
Гибкие тоководы. Если проводники для стационарных устройств можно в принципе изготовить из любого металла, то гибкие проводники делают почти всегда только из меди, алюминий для этих целей слишком ломкий. Содержат множество тоненьких медных жилок.
Теплоотводы. Медь не только на 56% лучше алюминия проводит ток, но ещё имеет почти вдвое лучшую теплопроводность. Из меди изготавливают тепловые трубки, радиаторы, теплораспределяющие пластины. Так как медь дороже алюминия, часто радиаторы делают составными, сердцевина из меди, а остальная часть из более дешевого алюминия.
Радиаторы охлаждения процессора. Центральный стержень изготовлен из меди, он хорошо отводит тепло от кристалла процессора, а алюминиевый радиатор с развитым оребрением уже охлаждает сам стержень.
При изготовлении фольгированных печатных плат. Печатные платы, в любом электронном устройстве изготовлены из пластины диэлектрика, на который наклеена медная фольга. Все соединения между элементами печатной платы выполнены дорожками из медной фольги.
Техника сверхвысокого вакуума. Из металлов и сплавов только нержавеющая сталь и медь пригодны для камер сверхвысокого вакуума в таких приборах, как ускорители элементарных частиц или рентгеновские спектрометры. Все остальные металлы в вакууме слегка испаряются и портят вакуум.
Аноды рентгеновских трубок. В рентгеноструктурном анализе требуется монохроматическое рентгеновское излучение. Его источником зачастую является облучаемая электронами медь (спектральная линия Cu Kα), которая к тому же прекрасно отводит тепло. Если же требуется другое излучение (Co или Fe), его получают от маленького кусочка соответствующего металла на массивном медном теплоотводе. Такие аноды всегда охлаждаются проточной водой.
Интересные факты о меди
- Медь — достаточно дорогой металл, поэтому недобросовестные производители стараются экономить на нем. Занижают сечение проводов (когда написано 0,75 мм2, а фактически 0,11 мм2). Окрашивают алюминий «под медь» в обмотках, внешне обмотка выглядит как медная, а стоит соскрести изоляцию — оказывается, что она сделана из алюминия. Этим грешат и китайские, и отечественные производители, кабель сечением 2,5 мм2 вполне может оказаться сечением 2,3 мм2, поэтому запас прочности и входной контроль не будут лишними. Разумеется, надежность контакта в электроарматуре жилы сечением 2,3 мм2, рассчитанной на жилу 2,5 мм2, будет ненадежной.
- Медь окрашивает пламя в зелёный цвет, это свойство использовали для обнаружения меди в руде, когда не был доступен химический анализ. Зеленый след в пламени — показатель наличия меди. (но не всегда, зеленую окраску пламени могут давать ионы бора)
- Медь — мягкий металл, но если добавить к меди хотя бы 10% олова, получается твёрдый, упругий сплав — бронза. Именно освоение получения бронзы послужило названием к исторической эпохе — бронзовому веку. Добавка к меди бериллия дает бериллиевую бронзу — прочный упругий сплав, из которого изготавливают пружинящие контакты.
- Медь — один из немногих мягких металлов с высокой температурой плавления, поэтому из меди изготавливают уплотнительные прокладки, например для высокотемпературной или вакуумной техники. Например, уплотнительная прокладка пробки картера двигателя автомобиля.
- При механической обработке (например волочении) медь уплотняется и становится жёсткой. Для восстановления исходной мягкости и пластичности медь «отжигают» в защитной атмосфере, нагревая до 500-700 °C и выдерживая некоторое время. Поэтому некоторые медные изделия твёрдые, а некоторые мягкие, например медные трубы.
- Медь не даёт искр. Для работы во взрывоопасных местах, например на газопроводе, используют искробезопасный инструмент, стальной инструмент покрытый слоем меди или инструмент изготовленный из сплавов меди — бронз. Если таким инструментом случайно чиркнуть по стальной поверхности он не даст опасных искр.
- Так как температурный коэффициент сопротивления для чистой меди известен, из меди изготавливают термометры сопротивления (тип ТСМ — Термометр Сопротивления Медный, есть еще ТСП — Термометр Сопротивления Платиновый). Термометр сопротивления — это точно изготовленный резистор, навитый из медной проволоки. Измерив его сопротивление, можно по таблице или по формуле определить его температуру достаточно точно.
Алюминий
Al — Алюминий. «Крылатый металл» третий по проводимости после серебра и меди.
Алюминий хоть и проводит ток почти в полтора раза хуже меди, но он легче в 3,4 раза и в три
раза дешевле. А если посчитать проводимость, то эквивалентный медному проводник из
алюминия будет дешевле в 6,5 раз! Алюминий бы вытеснил медь, как проводник везде, если
бы не пара его противных свойств, но об этом в недостатках.
Чистый алюминий, как и чистое железо, в технике практически не применяется (исключения
— провода и фольга). Любой «алюминиевый» предмет состоит из какого-нибудь сплава алюминия. Сплавы могут содержать кремний, магний, медь, цинк и другие металлы. Их свойства отличаются очень сильно, и это необходимо учитывать при обработке. Ниже перечислены несколько самых распространенных марок алюминия:
- 1199. Чистый 99,99% алюминий. Бывает почти исключительно в виде фольги.
- 1050 и 1060. Чистый 99,5% и 99,6% соответственно. Из-за высокой теплопроводности иногда используется как материал для радиаторов. Мягок, легко гнется. Провода, пищевая фольга, посуда.
- 6061 и 6082. Сплавы: 6061 — Si 0,6%, Mg 1,0%, Cu 0,28%, 6082 — Si, Mg, Mn. Первый более распространен в США, второй — в Европе. Легко точить, фрезеровать. Наилучший материал для самоделок. Прочен. Легко поддается сварке, паяется твердыми припоями. Легко анодируется. Плохо гнется. Не годится для литья.
- 6060. Состав: Mg, Si. Более мягок, чем 6061 и 6082, при обработке резанием слегка «пластилиновый», за что его не любят токари. Распространен и дешев, других особых преимуществ не имеет. Дешевый алюминиевый профиль из непонятного сплава имеет хорошиешансы оказаться им.
- 5083. Сплав с магнием (>4% Mg). Отличная коррозионная стойкость, устойчив в морской воде. Один из лучших вариантов для деталей, работающих под дождем. Тоже может встретиться в магазине стройматериалов, наряду с другими подобными марками.
- 44400, он же «силумин». Сплав с большим процентом кремния (Si >8%). Литейный. Низкая температура плавления, при пайке твердыми припоями риск расплавить саму деталь. Хрупок, при изгибе ломается. На изломе видны характерные кристаллы.
- 7075. 2,1-2,9% Mg, 5,1-6,1% Zn, 1,2-1,6% Cu. Очень своеобразный сплав, отличается даже цветом (пленка окислов слегка золотистая). Неожиданно твердый для алюминия, по твердости сравним с мягкой сталью. Плохо анодируется. Не паяется вообще. Не сваривается вообще. Не гнется и не куется вообще. Не годится для литья. Резанием обрабатывает ся отлично, прекрасно полируется. Хорош для ответственных деталей. Используется для винтов в велосипедах, в оружии (материал многих деталей винтовки M16).
Относительно невысокая температура плавления (660 °C у чистого, меньше 600 °C у литейных сплавов) алюминия делает возможным отливку деталей в песочные формы в условиях
гаража/мастерской. Однако многие марки алюминия не годятся для литья.
Примеры применения
Провода. Алюминий дешев, поэтому толстые силовые кабели, СИП, ЛЭП выгодно делать из алюминия. В старых домах квартирная проводка сделана алюминиевым проводом (с 2001 года ПУЭ запрещает в квартирах использовать алюминиевый провод, только медный, см ПУЭ 7 издание п. 7.1.34) Также алюминий не используется как проводник в ответственных применениях.
Слева старый алюминиевый провод. Справа алюминиевые кабели различного сечения,
пригодные для укладки в грунт. В частности кабелем справа был подключен к электроэнергии целый этаж здания. Кабель помимо наружной резиновой оболочки имеет бронирующую стальную ленту, для защиты нижележащей изоляции от повреждений, к примеру лопатой при раскопке.
Теплоотводы. Не только домашние батареи делают из алюминия, но и радиаторы у
микросхем, процессоров, делают из алюминия.
Различные алюминиевые радиаторы.
Корпуса приборов. Корпус жёсткого диска в вашем компьютере отлит из алюминиевого сплава. Небольшая добавка кремния улучшает прочностные качества алюминия, сплав силумин — это корпуса жёстких дисков, бытовых приборов, редукторов и т. д.
Анодированный алюминий (алюминий, у которого электрохимическим путем окисная пленка
на поверхности сделана потолще и прочнее) хорошо окрашивается и просто красив. Окисная
пленка (Al2O3 — из того же вещества состоят драгоценные камни рубины и сапфиры) достаточно твёрдая и износостойкая, но к сожалению алюминий под ней мягок, и при сильном воздействии ломается как лёд на воде.
Экраны. Электромагнитное экранирование часто делается из алюминиевой фольги или тонкой алюминиевой жести. Можете провести простой эксперимент, мобильный телефон
завернутый в фольгу потеряет сеть — он будет заэкранирован.
Отражающее покрытие у зеркал. Тонкая пленка алюминия на стекле отражает 89% падающего света (примерное значение, зависит от условий) (Серебро 98%, но на воздухе темнеет из-за сернистых соединений). Любой лазерный принтер содержит вращающееся зеркало, покрытое тонким слоем алюминия.
Зеркала от оптической системы планшетного сканера. Обратите внимание, оптические зеркала имеют металлизацию стекла снаружи, в отличии от привычных бытовых зеркал, где отражающее покрытие для защиты за стеклом. Бытовые зеркала дают двойное отражение — от поверхности стекла и от отражающего покрытия, что не так критично в быту, как защищенность отражающего покрытия.
Электроды обкладок конденсаторов. Алюминиевая фольга, разделенная слоем диэлектрика и туго свернутая в цилиндр — часть электрических конденсаторов (впрочем, для уменьшения габаритов конденсаторов фольгу заменяют алюминиевым напылением). Тот факт, что пленка оксида алюминия тонкая, прочная и не проводит ток, используется в электролитических конденсаторах, обладающими огромными для своих габаритов электрическими емкостями.
Недостатки
Алюминий — металл активный, но на воздухе покрывается оксидной пленкой, которая предохраняет металл от разрушения и скрывает его активную натуру. Если не дать алюминию формировать стабильную защитную пленку, например капелькой ртути, алюминий активно реагирует с водой. В щелочной среде алюминий растворяется, попробуйте залить алюминиевую фольгу средством для прочистки труб — реакция будет бурная, с выделением взрывоопасного водорода. Химическая активность алюминия, в паре с большой разницей в электрооотрицательности с медью делает невозможным прямое соединение проводов из этих двух металлов. В присутствии влаги (а она в воздухе есть почти всегда) начинает протекать гальваническая коррозия с разрушением алюминия.
Два идентичных трансформатора от микроволновых печей. Левый вышел из строя по причине алюминиевых обмоток — отгорел провод от контакта — алюминий плохо паяется мягкими припоями, попытка обеспечить контакт также как и у медного провода привела к поломке.
Алюминий ползуч. Если алюминиевый провод очень сильно сжать, он деформируется
и сохранит новую форму — это называется «пластическая деформация». Если сжать его не
так сильно, чтобы он не деформировался, но оставить под нагрузкой надолго — алюминий
начнет «ползти» меняя форму постепенно. Это пакостное свойство ведет к тому, что хорошо
затянутая клемма с алюминиевым проводом спустя 5-10-20 лет постепенно ослабнет и будет
болтаться, не обеспечивая былого электрического контакта. Это одна из причин, почему ПУЭ
запрещает тонкий алюминиевый провод для разводки электроэнергии по потребителям в
зданиях. В промышленности не сложно обеспечить регламент — так называемая «протяжка»
щитка, когда электрик периодически проверяет затяжку всех клемм в щитке. В домашних же условиях, обычно пока розетка с дымом не сгорит — никто и не озаботится качеством контакта. А плохой контакт — причина пожаров.
Алюминий, по сравнению с медью, менее пластичный, риска от ножа на жиле, при сьёме изоляции с провода быстрее приведет к сломавшейся жиле, чем у меди, поэтому изоляцию с алюминиевых проводов надо счищать как с карандаша, под углом, а не в торец.
Интересные факты об алюминии
- Алюминий — хороший восстановитель, что используется для восстановления других металлов, например титана из состояния диоксида. Теодор Грей (Настоятельно рекомендую книги Теодора Грея «Элементы. Путеводитель по периодической таблице», «Научные опыты с периодической таблицей», «Эксперименты. Опыты с периодической таблицей». Они очень хорошо сделаны визуально, и опыты в них не приторно безопасные, как в большинстве современных пособий, могут и бабахнуть.) в домашних условиях проводил такой опыт. В смеси с окислом железа алюминиевая пудра образует термит— адская смесь, которая горит разогреваясь до 2400°С при этом восстанавливается железо и весело стекает вниз, что используется для сварки рельсов, иным способом такой кусок железа качественно и быстро не прогреть. Термитные карандаши позволяют в полевых условиях сваривать провода, а бравый спецназовец термитной горелкой пережжет дужку самого крепкого замка.
- Чтобы сделать бисквит нежным и воздушным используется пекарский порошок. Такой же порошок есть для того, что бы сделать пористым бетон — Алюминий + щелочь.
- Алюминий — активный металл, но он быстро покрывается окисной пленкой, которая защищает его от разрушения. Рубин, сапфир, корунд — это всё названия одного и того же вещества — оксида алюминия Al2O3 Белые точильные круги и бруски состоят из электрокорунда — оксида алюминия.
Можно убедиться в активности алюминия простым опытом. Нарежьте алюминиевую фольгу в стакан, добавьте медный купорос и поваренную соль, залейте холодной водой. Спустя некоторое время смесь закипит, алюминий будет окисляться, восстанавливая медь, с выделением тепла.
- Алюминий неплохо поддается экструзии. Корпуса приборов из нарезанного и обработанного экструдированного профиля значительно дешевле литых.
- Алюминий весьма посредственно паяется мягкими (оловянно-свинцовыми) припоями, неплохо паяется цинковыми припоями. При конструировании приборов это стоит помнить, соединить провод с алюминиевым шасси проще прикрутив винтом к запрессованной стойке, чем припаять. В твердых марках алюминия (6061, 6082, 7075) можно нарезать резьбу для винта непосредственно.
Алюминий можно сваривать аргоновой сваркой, но качественный шов получается только при TIG-сварке на переменном токе. Непрерывная смена полярности измельчает пленку окислов, которая в противном случае может попасть в шов. Учитывайте это при выборе сварочного аппарата для мастерской, если вам может потребоваться варить и алюминий.
В крупных строительных магазинах (OBI, Leroy Merlin, Castorama) обычно есть в наличии алюминиевый профиль разных размеров и форм. Неплохим источником может послужить штампованная алюминиевая посуда — она очень дешева и существует разных форм. Но обратите внимание на марки. Если нужен 6061 и тем более 7075, придется покупать его уфирмы, специализирующейся по металлам.
Если понравилось — будет продолжение. Запланировано 11 частей.
Автор: spiritus_sancti