Компьютер с кипящим охлаждением представлен на семинаре в ИПС РАН

в 8:58, , рубрики: будущее здесь, жидкостное охлаждение, инженерные системы, инфраструктура, оборудование, охлаждение, погружное охлаждение, Производство и разработка электроники, суперкомпьютеры

16 октября 2020 года на семинаре в Институте программных систем РАН (Переславль-Залесский) был показан экспериментальный компьютер, охлаждаемый кипящей жидкостью. Конечно, кипящей при невысокой температуре (40°C). По словам исследователей, это позволяет в тысячи раз улучшить отбор тепла на процессоре и создать одинаково холодные условия во всей установке.

Слева монитор управляющей системы, справа компьютер, на его процессоре заметно кипение.

Слева монитор управляющей системы,
справа компьютер, на его процессоре заметно кипение.

Компьютер не перемещает никаких грузов, не обрабатывает сырья, не выпекает хлеб или керамику — то есть не тратит электрическую мощность на производство продукции. Вся эта мощность должна быть рассеяна компьютером без перегрева, всё его тепло надо сбросить в окружающую среду. Поэтому охлаждение электроники становится очень важной, ключевой задачей. Шаг за шагом было придумано воздушное охлаждение, потом изолированное жидкостное (охладитель в трубках), потом погружное (электроника плавает в охладителе). А теперь сделан следующий шаг — фазовый переход.

Стенд работает

Бросим взгляд на экспериментальную установку. Вот аквариум с материнской платой. В него налита фторкетонная жидкость. И да, она совсем сухая на ощупь, потому что мгновенно испаряется с ладони. На процессоре эта жидкость кипит пузырьками и превращается в пар.

Для проверки на стенде установлен набор резисторов.

Для проверки на стенде установлен набор резисторов.

Чуть выше стоит конденсатор, в нём течёт холодная вода и собирает всё тепло, которое несёт этот пар. Отдав тепло, пар конденсируется и капает вниз, а вода, нагревшись, течёт в теплообменник в нижней части стенда. Здесь тепло из воды уходит на улицу, а холодная вода возвращается в конденсатор.

Конденсатор, который собирает тепло.

Конденсатор, который собирает тепло.

Говорит один из разработчиков, кандидат технических наук Сергей Анатольевич Амелькин:

— Мы погружаем процессор в кипящую жидкость, и его тепло передаётся кипящей жидкости. Если кипение происходит при достаточно низкой температуре, процессор не будет сильно греться, а тепло будет собрано жидкостью. При этом жидкость изменит фазовое состояние, станет паром. Этот пар сам поднимается через слой жидкости наверх к конденсатору. Экспериментальная установка и работает, и жидкость в ней кипит, и дождик капает!

Охлаждающая жидкость закипает, видны капли и брызги.

Охлаждающая жидкость закипает, видны капли и брызги.

На 140 ваттах мощности, которые отдаёт экспериментальный вычислительный узел, разница температуры между процессором и жидкостью составила 35 градусов. Это соответствует коэффициенту теплопередачи 2500 Вт/(м²×К).

По расчёту в этом аквариуме можно утилизировать в окружающую среду 15 кВт мощности при температуре окружающей среды 20 градусов. Сейчас, подключённый к обычной розетке, стенд выводит в воздух 2,5 кВт мощности. (Таково ограничение электрической сети в лаборатории.) Кипеть начинает за пять минут. Опыт сделан на комплекте резисторов, включённом через ЛАТР.

Снова дадим слово разработчику. Говорит доктор технических наук Анатолий Михайлович Цирлин:

— Опуская компьютер в кипящую жидкость, мы фиксируем температуру всех элементов. Они будут иметь ту температуру, при которой жидкость кипит. Это стабильная температура, не надо никакого регулирования.

Охлаждающая жидкость бурлит и плещется.

Охлаждающая жидкость бурлит и плещется.

Коэффициент теплообмена теперь резко увеличился. За счёт этого процессор теперь охлаждается напрямую, без радиатора. Однако площадь самого процессора невелика, поэтому не удаётся снимать с него очень уж большую мощность. Есть мысль создать специальный радиатор, который будет контактировать с процессором в нескольких точках. Хотя площадь контакта у него будет маленькой, но ведь поверхность теплообмена будет значительно больше.

Что будет дальше

Лабораторная установка, показанная в ИПС РАН, позволит учёным экспериментально изучать режимы и процессы двухфазных охладительных систем. Тут можно сравнивать различные охлаждающие жидкости и хладагенты, проверять работу радиаторов, продолжая исследования в области кипящего охлаждения.

О продолжении этих исследований мы спросили Анатолия Михайловича Цирлина, и вот что он рассказывает.

— Наша следующая цель — кипящий струйный компьютер, в котором струя кипящей жидкости обтекает горячие элементы, чтобы распределять её на самые горячие места. За счёт движения жидкости можно увеличить коэффициент теплоотдачи в три раза. Но ещё важнее, что за счёт движения жидкости можно управлять переходом кипения от пузырькового режима к плёночному, когда образуется плёнка пара. Такой переход в плёночный режим опасен, при нём всё перегревается.

В перспективе эти работы могут быть использованы при разработке суперкомпьютеров. К сожалению, сейчас в России не строят коммерческих суперкомпьютеров, а недавно запущенный суперкомпьютер Сбербанка «Кристофари» был разработан и построен американской компанией Nvidia.

Тепло стремительно уходит за счёт кипения.

Тепло стремительно уходит за счёт кипения.

Кто придумал и построил всё это

В работе участвовали четыре человека: дтн Анатолий Михайлович Цирлин, ктн Сергей Анатольевич Амелькин, аспиранты Алексей Анатольевич Петров и Алексей Алексеевич Демидов. Они трудятся в Институте программных систем имени Айламазяна РАН в городе Переславле, Ярославская область.

Сергей Амелькин демонстрирует работу стенда.

Сергей Амелькин демонстрирует работу стенда.

Анатолий Михайлович Цирлин придумал эту идею (DOI) и предложил её в 2016 году, выступая на Национальном Суперкомпьютерном Форуме в Переславле.

Кандидат технических наук Сергей Анатольевич Амелькин разработал математическую модель системы охлаждения, основанной на фазовом переходе. Выбран оптимальный режим, соответствующий минимальной необратимости процесса охлаждения. Опираясь на модель, он предложил конструктивные решения, которые обеспечат реализацию такого режима, и разработал алгоритмы для управления погружными двухфазными системами охлаждения.

Аспирант Алексей Алексеевич Демидов проводил расчёты, проектировал инженерную 3D-модель экспериментальной установки. Исходя из гидравлической схемы, он расположил в столе и в «аквариуме» все компоненты гидравлики — конденсатор, драйкулер, насосы, теплообменник, расширительный бак. Он моделировал вычислительный узел и испытательный блок с нагрузочными резисторами, подготовил чертежи и конструкторскую документацию. Наконец, он контролировал весь процесс сборки и наладки стенда в лаборатории.

Аспирант Алексей Анатольевич Петров уже несколько лет создаёт системы управления для погружного охлаждения фирмы «Иммерс». Такая система управляет насосами и вентиляторами через программируемые контроллеры. Задача тут непростая — надо поддержать в каждом контурне системы охлаждения постоянный температурный режим. С одной стороны, надо обспечить низкую температуру, а с другой стороны, хочется тратить минимум энергии на работу охладительной системы при самой разной температуре окружающего воздуха, куда, собственно, всё тепло в конечном счёте уходит. Здесь он писал SCADA-систему, которая слушает датчики температуры и давления, включает и выключает вентилятор, выводит сведения на экран оператора — то есть управляет всей аппаратурой.

Вот такой был семинар и вот такие достижения. Надеюсь, не в последний раз.


Текст и иллюстрации: CC-BY-SA 3.0.

Автор: PereslavlFoto

Источник

* - обязательные к заполнению поля


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js