Компьютеры преобразовали работу и развлечения, перевозки и медицину, игры и спорт. И при всей их мощи эти машины всё ещё не способны выполнять простейшие задачи, с которыми справится и ребёнок – допустим, перемещаться в неизвестном помещении или использовать карандаш.
Наконец, становится доступным решение этой проблемы. Оно появится на пересечении двух направлений исследований: обратной разработки
Почему для постройки умных машин нам нужно понять, как работает
В нашей компании Numenta, находящейся в Редвуд-Сити, шт. Калифорния, мы изучаем неокортекс (новую кору) – крупнейший из компонентов
Чтобы понять эти свойства, нужно начать с основ биологии. Человечески
Неокортекс – это сильно складчатый лист толщиной в 2 мм. Если бы его можно было растянуть, он был бы размером с большую салфетку. У людей он занимает 75% объёма
При рождении неокортекс почти ничего не знает, он обучается через опыт. Всё, что мы узнаём о мире – ведя машину, делая кофе в автомате, и тысячи других вещей, с которыми мы взаимодействуем ежедневно – хранится в неокортексе. Он учится тому, что это за объекты, где они находятся и как себя ведут. Неокортекс генерирует команды для моторики, так что когда вы готовите еду или пишете программу, это поведение контролирует именно неокортекс. Язык также создаётся и понимается неокортексом.
Неокортекс, как и весь
Имеющийся у вас опыт, связанный с окружающим миром – то, что вы распознаёте лицо приятеля, наслаждаетесь музыкой, держите в руке мыло – появился в результате входных данных, поступивших из глаз, ушей и других органов чувств, прошедших до вашего неокортекса и заставивших группы нейронов сработать. Когда нейрон срабатывает, его электрохимический всплеск путешествует по аксону и по синапсам проходит в другие нейроны. Если принимающий нейрон получает достаточно входных импульсов, он может сработать в ответ и активировать другие нейроны. Из 30 млрд нейронов, содержащихся в неокортексе, в любой момент работают 1-2%, что означает, что в любой момент времени активны миллионы нейронов. Набор активных нейронов меняется, когда вы двигаетесь и взаимодействуете с миром. Ваше ощущение мира, то, что вы можете посчитать разумным опытом, определяется постоянно меняющимся рисунком активных нейронов.
В неокортексе эти рисунки хранятся благодаря формированию новых синапсов. Их хранение позволяет вам распознавать лица и места, когда вы видите их вновь, и вызывать их из памяти. К примеру, когда вы думаете о лице вашего друга, в неокортексе возникает рисунок сработавших нейронов, схожий с рисунком, появляющимся, когда вы реально видите его лицо.
Удивительно, насколько неокортекс одновременно простой и сложный. Он сложный, поскольку он разделён на десятки участков, каждый из которых отвечает за разные сознательные функции. В каждом регионе есть множество слоёв нейронов, а также десятки типов нейронов, и эти нейроны соединяются в сложные комплексы.
Неокортекс можно назвать и простым, поскольку детали каждого участка практически одинаковы. В процессе эволюции появился единственный алгоритм, применимый ко всему, что делает неокортекс. Существование такого универсального алгоритма – захватывающий факт, поскольку если мы сможем расшифровать его, мы сможем добраться до сути понятия «интеллект», и внедрить это знание в будущие машины.
Но разве не этим занимается ИИ? Разве не все ИИ строятся на "нейросетях", похожих на те, что существуют в
Недавние успехи в понимании того, как работает неокортекс, приводят нас к догадкам по поводу того, как могут быть устроены думающие машины будущего. Я попробую описать эти аспекты биологического интеллекта, необходимые, но отсутствующие в современных ИИ. Это обучение повторным монтажом, распределённые представления и воплощение, касающиеся использования движения в целях обучения реалиям окружающего мира.
Обучение повторным монтажом [learning by rewiring]:
В последние годы нейробиологи узнали несколько интересных фактов по поводу дендритов. Каждая из его ветвей работает как набор распознавания шаблонов. Оказывается, что 15-20 активных синапсов на ответвлении достаточно, чтобы распознать шаблон активности в большом наборе нейронов. Следовательно, единственный нейрон может распознать сотни различных шаблонов. Некоторые из них заставляют его срабатывать, а другие меняют внутреннее состояние клетки и работают, как предсказания будущих действий.
Когда-то нейробиологи считали, что обучение происходит исключительно благодаря модификации эффективности существующих синапсов, чтобы при поступлении входящего сигнала вероятность включения нейрона синапсом уменьшалась или увеличивалась. Но сейчас мы уже знаем, что большая часть обучения происходит благодаря выращиванию новых синапсов между клетками – происходит «повторный монтаж»
Именно поэтому мы можем выучивать новое, не нарушая старые воспоминания, и нам не нужно тренировать
Умным машинам не обязательно моделировать всю сложность биологических нейронов, но возможности, имеющиеся благодаря дендритам и обучение через повторный монтаж – это необходимость. Эти возможности должны быть в будущих системах ИИ.
Распределённые представления:
Допустим, вы хотите при помощи SDR представить концепцию «кот». Можно использовать 10000 нейронов, из которых активными будут 100. Каждый из активных нейронов представляет некий аспект кота, допустим, «домашнее животное», «пушистый», «когтистый». Если несколько нейронов умрут, или включатся несколько новых, то новая SDR всё ещё будет хорошим представлением о коте, поскольку по большей части активные нейроны будут те же самые. Таким образом, вместо ненадёжного представления SDR получается стойким к ошибкам и шуму. Когда мы построим кремниевые версии
Хочу упомянуть две особенности SDR. Во-первых, наложение облегчает сравнение двух вещей, и позволяет понять, чем они похожи и чем они отличаются. Допустим, одно SDR представляет кота, а другое – птицу. У обоих SDR будут активными одни и те же группы нейронов, представляющие «домашнее животное» и «когтистый», но не «пушистый». Пример упрощён, но свойство наложения важно, поскольку благодаря ему
Второе свойство, объединение, позволяет
Эти свойства SDR фундаментальны для понимания,
Воплощение: неокортекс получает входные данные от органов чувств. Каждый раз, когда мы двигаем глазами, конечностями или туловищем, входные данные от чувств меняются. Этот постоянно изменяющийся ввод – основной механизм, используемый
Я не хочу сказать, что умной машине нужно физическое тело – только что она может менять ощущения через движение. К примеру, виртуальный ИИ может «двигаться» сквозь веб, переходя по ссылкам и открывая файлы. Он может изучить структуру виртуального мира через виртуальные движения, аналогично тому, как мы ходим по зданию.
Это приводит нас к важному открытию, сделанному в компании Numenta в прошлом году. В неокортексе данные от ощущений обрабатываются иерархией участков. Когда данные проходят с одного уровня иерархии на другой, из них извлекаются всё более сложные признаки, пока в какой-то момент не получается распознать объект. Сети глубинного обучения тоже используют иерархию, но им часто требуется 100 уровней обработки для распознавания изображения, а неокортекс для достижения того же результата обходится всего четырьмя. Также сетям с глубинным обучением требуются миллионы тренировочных примеров, а неокортекс может изучать новые объекты при помощи всего нескольких движений и ощущений.
Герман Гельмгольц, немецкий физик XIX века, одним из первых предложил ответ на этот вопрос. Он увидел, что хотя наши глаза двигаются три-четыре раза в секунду, наше визуальное восприятие остаётся стабильным. Он вычислил, что
Мы открыли, что сенсомоторная интеграция происходит во всех участках неокортекса. Это не отдельный шаг, а неотъемлемая часть обработки ощущений. Сенсомоторная интеграция – ключевая часть «интеллектуального алгоритма» неокортекса. У нас есть теория и модель того, каким образом нейроны могут это делать, и она хорошо накладывается на сложную анатомию региона неокортекса.
Каковы последствия этого открытия для машинного интеллекта? Рассмотрим два типа файлов из тех, что вы можете найти на компьютере. Один – изображение, сделанное фотоаппаратом, а другой – разработанный на компьютере дизайн, к примеру, файл Autodesk. Изображение – это двумерный массив визуальных деталей. CAD-файл – это также набор деталей, но каждая из них связана с расположением в трёхмерном пространстве. CAD-файл моделирует трёхмерные объекты, а не то, как объект выглядит с какой-то определённой перспективы. С CAD-файлом можно предсказать, как будет выглядеть объект с любой точки зрения, и определить, как он будет взаимодействовать с другими трёхмерными объектами. С изображением такого не сделаешь. Мы открыли, что каждый участок неокортекса выучивает трёхмерные модели объектов примерно так же, как CAD-программа. Каждый раз, когда ваше тело двигается, неокортекс воспринимает текущую команду моторики, преобразует её в положение в системе координат объекта и комбинирует это положение с данными, полученными с органов чувств, чтобы строить трёхмерные модели мира.
В ретроспективе это наблюдение имеет смысл. Умным системам необходимо выучить многомерные модели мира. Сенсомоторная интеграция не происходит в нескольких частях
Три этих основных аспекта неокортекса – обучение повторным монтажом, распределённые представления и сенсомоторная интеграция — будут краеугольными камнями машинного интеллекта. Думающие машины будущего могут игнорировать многие аспекты биологии, но не эти три. Без сомнения, нас ждут и другие открытия в области нейробиологии, проливающие свет на другие особенности сознания, которые необходимо будет включать в подобные машины в будущем, но начинать можно уже с того, что нам известно сегодня.
С самых ранних дней ИИ критики отметали идею попытки эмуляции человеческого
Думая о будущем, я волнуюсь из-за того, что наши цели недостаточно амбициозны. Для сегодняшних компьютеров очень здорово заниматься классификацией изображений и распознавать речь, но мы не подходим близко к созданию по-настоящему умных машин. Я считаю, что для нас жизненно важно заняться этим. Будущие успехи и даже выживание человечества может зависеть от этого. К примеру, если мы собираемся заселять другие планеты, нам понадобятся машины, действующие в нашу пользу, для полётов в космосе, строительства сооружений, добычи ресурсов и независимого решения сложных проблем в окружающей среде, в которой люди не смогут выжить. На Земле мы сталкиваемся с проблемами болезней, климата и нехватки энергии. Умные машины могут помочь нам. К примеру, вполне возможно сделать умные машины, чувствительные и способные работать на молекулярных масштабах. Они могли бы рассуждать о сворачивании белков и экспрессии генов так же, как мы с вами рассуждаем о компьютерах и степлерах. Они могли бы думать и действовать в миллион раз быстрее человека. Такие машины могли бы лечить заболевания и поддерживать наш мир в обитаемом состоянии.
В 1940-х пионеры компьютерной эры чувствовали, что компьютеры далеко пойдут и будут весьма полезны, и что они, вероятно, преобразуют человеческое общество. Но они не могли точно предсказать, как компьютеры изменят наши жизни. Так же и мы можем быть уверены, что по-настоящему умные машины преобразуют наш мир к лучшему, даже если сегодня мы не можем предсказать, как именно. Через 20 лет мы оглянемся назад и поймём, что в наше время прорывы в теории
Автор: SLY_G