Термоядерная энергетика: надежда человечества?

в 5:37, , рубрики: будущее здесь, токамак, Энергия и элементы питания, метки:

Термоядерная энергетика: надежда человечества?Когда я был маленький, я бывало читал журнал «Наука и Жизнь». Там часто рассказывали про термоядерный синтез в радостном ключе — вот уже почти, и оно будет! Многие страны, чтобы успеть на раздачу бесплатной энергии строили у себя Токамаки (и настроили их суммарно 300 штук по всему миру).

Годы шли… Сейчас 2013-й год, а человечество до сих пор получает бОльшую часть энергии от сжигания угля, как в 19-м веке. Почему так получилось, что мешает создать термоядерный реактор, и чего нам ждать в будущем — под катом.

Теория

Ядро атома, как мы помним, состоит в первом приближении из протонов и нейтронов (=нуклонов). Для того, чтобы от атома оторвать все нейтроны и протоны — нужно затратить определенную энергию — энергию связи ядра. Эта энергия отличается у различных изотопов, и естественно, при ядерных реакциях баланс энергии должен сохранятся. Если построить график энергии связи для всех изотопов (из расчета на 1 нуклон), получим следующее:
Термоядерная энергетика: надежда человечества?
Отсюда мы видим, что получать энергию мы можем или разделяя тяжелые атомы (вроде 235U), или соединяя легкие.

Наиболее реалистичные и интересные в практическом отношении следующие реакции синтеза:

1) 2D+3T -> 4He (3.5 MeV) + n (14.1 MeV)
2) 2D+2D -> 3T (1.01 MeV) + p (3.02 MeV) 50%
    2D+2D -> 3He (0.82 MeV) + n (2.45 MeV) 50%
3) 2D+3He -> 4He (3.6 MeV) + p (14.7 MeV)
4) p+11B -> 34He + 8.7 MeV

В этих реакциях используется Дейтерий (D) — его можно получать прямо их морской воды, Тритий (T) — радиоактивный изотоп водорода, сейчас его получают как отход на обычных ядерных реакторах, можно специально производить из лития. Гелий-3 — вроде-бы на Луне, как мы все уже знаем. Бор-11 — природный бор на 80% состоит из бора-11. p (Протий, атом водорода) — обычный водород.

Для сравнения, при делении 235U выделяется ~202.5 MeV энергии, т.е. гораздо больше чем при реакции синтеза из расчета на 1 атом.

По реакциям 1 и 2 — получается много очень высокоэнергетических нейтронов, которые всю конструкцию реактора делают радиоактивной. А вот реакции 3 и 4 — «без-нейтронные» (aneutronic) — не дают наведенной радиации. К сожалению, побочные реакции все равно остаются, например из реакции 3 — дейтерий будет и сам с собой реагировать, и небольшое нейтронное излучение все-же будет.

Реакция 4 интересна тем, что в результате получаем 3 альфа-частицы, с которых теоретически можно напрямую энергию снимать (т.к. они фактически представляют собой движущиеся заряды = ток).

В общем, интересных реакций достаточно. Вопрос лишь в том, насколько просто их осуществить в реальности?

О сложности проведения реакции Человечество относительно легко освоило деление 235U: никакой сложности тут нет — поскольку нейтроны не обладают зарядом, они могут буквально «проползать» сквозь ядро даже с очень маленькой скоростью. В большинстве реакторов и используются как раз такие, тепловые нейтроны — у которых скорость движения сравнима со скоростью теплового движения атомов.

А вот при реакции слияния — у нас есть 2 ядра имеющие заряд, и они отталкиваются друг от друга. Для того, чтобы сблизить их на нужное для реакции расстояние — нужно, чтобы они двигались с достаточной скоростью. Скорости такой можно либо достичь в ускорителе (когда все атомы в результате двигаются с одной оптимальной скоростью), или нагреванием (когда атомы летают как попало в случайных направлениях и случайной скоростью).

Вот график, показывающий скорость реакции (сечение) в зависимости от скорости (=энергии) сталкивающихся атомов:
Термоядерная энергетика: надежда человечества?

Вот то же, но построенное от температуры плазмы, с учетом того, что атомы там летают со случайной скоростью:
Термоядерная энергетика: надежда человечества?
Сразу видим, что реакция D+T — самая «легкая» (ей нужны жалкие 100 миллионов градусов), D+D — примерно в 100 раз медленее при тех же температурах, D+3He идет быстрее чем конкурирующая D+D только при температурах порядка 1 млрд градусов.

Таким образом, только реакция D+T хотя бы отдаленно доступна человеку, со всеми её недостатками (радиоактивность трития, сложности с его получением, наведенная нейтронами радиация).

Но как вы понимаете, взять и нагреть что-то до ста миллионов градусов и оставить реагировать не выйдет — любые нагретые предметы излучают свет, и таким образом быстро остывают. Плазма нагретая до сотни миллионов градусов — светит в рентгеновском диапазоне, и что самое печальное — она прозрачна для него. Т.е. плазма с такой температурой фатально быстро остывает, и чтобы поддерживать температуру нужно постоянно вкачивать гигантскую энергию на поддержание температуры.

Впрочем, из-за того, что в термоядерном реакторе газа очень мало (например в ITER — всего пол грамма), все получается не так плохо: чтобы нагреть 0.5г водорода до 100 млн градусов нужно потратить примерно столько же энергии, как и для нагревания 186 литров воды на 100 градусов.

Посмотрим теперь, какие подходы есть к реализации термоядерного реактора.

Конструкции

Звезда — естественный термоядерный реактор. Горячая плазма под высоким давлением удерживается гравитацией, а все излучаемое рентгеновское излучение — за счет огромной плотности и размеров поглощается. Таким образом ядро не остывает даже при относительно маленьких скоростях реакции. Из-за этого в ядре сгорает не только водород и дейтерий, но и гораздо более тяжелые элементы. К сожалению, на земле такую конструкцию реализовать затруднительно.

Термоядерная энергетика: надежда человечества?Термоядерная (водородная) бомба — также достаточно проста по конструкции. Полый шар из плутония в дельта-фазе (дельта-фаза имеет на 1/4 меньшую плотность чем альфа-фаза), а в центре в простейшем случае — термоядерное топливо, дейтерид лития-6. С помощью 2-х типов взрывчатки («медленной» и «быстрой») и двух детонаторов формируется сферическая ударная волна, которая переводит плутоний в альфа-фазу меньшего размера, в которой возможна цепная реакция деления. По желанию можно добавить внешний импульсный нейтронный инициатор (о нем ниже) — в момент наибольшего сжатия он выдаст кучу нейтронов, которые должны дать резкий старт реакции.

«Лишние» нейтроны захватываются литием-6 с образованием трития, и образуется как раз нужная нам нагретая смесь дейтерия и трития. Они начинают реагировать друг с другом — и удерживает их от разлетания сила инерции относительно тяжелого корпуса заряда из урана. Помимо этого, урановый корпус непрозрачен для рентгеновского излучения — соответственно потери тепла меньше. Вся реакция заканчивается за 1 микросекунду — и корпус только-только начинает разлетаться в разные стороны.

Это была так называемая «бустерная схема» ядерного заряда, где вклад термоядерной реакции невелик, и лишь позволяет немного поднять мощность «задешево» (плутоний — страшно дорогой, а литий — в сравнении с ним дешев как грязь).

Тритий напрямую не используют поскольку он радиоактивный и соответственно долго не хранится. А литий-6 стабилен, и ядерный заряд всегда готов к бою. Можно использовать и литий-7 — он не только дает тритий, но и еще один лишний нейтрон. Об этой реакции не знали, когда американцы тестировали бомбу «Shrimp» («Креветка»). Из-за отсутствия чистого лития-6 положили частично обогащенный в котором лития-6 было всего 40%, и рассчитывали на взрыв в 6 мегатонн, а долбануло на 15.

Существует и схема радиационной имплозии — когда первичный ядерный взрыв рентгеновским излучением обжимает и нагревает отдельную сферу с термоядерным топливом.

Это конечно все хорошо работает в целях разрушения, но в целях получения энергии этот подход использовать не получается, очень уж высока минимальная мощность взрыва, и слишком много обычных радиоактивных продуктов реакции плутония/урана.

Линейные ускорители: идея проста — берем мишень из любого удобного дейтерида металла, и в маленьком линейном ускорителе разгоняем до нужной скорости атомы трития. Получаем настоящую термоядерную реакцию, и выходом энергии и 14.1 MeV нейтронов. Такой источник можно использовать для поиска нефти и воды (например на марсианском ровере MSL стоит российский импульсный источник нейтронов DAN), и в качестве внешнего импульсного нейтронного инициатора в ядерных зарядах.

Почему-же так нельзя вырабатывать электричество? На разгон атомов тратиться намного больше энергии, чем мы получаем в результате реакции (далеко не все разгоняемые атомы реагируют). По моим расчетам DAN например имеет КПД порядка 0.0016%.

Токамак (тороидальная камера с магнитными катушками) — идея уже немного сложнее, в плазменном торе как в трансформаторе наводим ток. Вокруг тора — сверхпроводящие магниты, которые «обжимают» плазму и не дают ей коснуться стенок. Плазма нагревается микроволновым излучением, и резистивным нагревом от протекающего тока. Когда начинали работать по этому направлению — казалось: вот-вот и все будет работать.

Во всем мире построено порядка 300 токамаков, и самый современный и крупный из них — строящийся международный проект ITER (в том числе и при участии России). В нем должен быть наконец достигнут показатель Q=10 (т.е. выделение энергии в 10 раз больше затрачиваемой на нагрев и удержание плазмы). Водородную плазму (т.е. без термоядерной реакции) собираются зажечь в 2020-м, а начать запуски с дейтерий-тритиевой плазмой — в 2027, если конечно все пойдет по плану и не случится какой-нибудь очередной кризис.
Термоядерная энергетика: надежда человечества?

Проблемы у токамаков следующие:

  1. Нестабильность плазмы. Разряд норовит где-то становится тоньше, где-то — толще, вплоть до разрыва кольца (с прекращением тока) или касанием стенок. С проблемой боролись увеличением размеров камеры, добавлением полоидального магнитного поля (вокруг вертикальной оси камеры).
  2. Тритий — дорог, и его нужно много для производства энергии. Если мы единственный нейтрон, образующийся в реакции D+T с помощью лития-6 конвертируем в 1 атом трития — за счет неизбежных потерь нейтронов трития будет все меньше и меньше. Необходимо использовать размножение нейтронов — используя например литий-7 или свинец, которыми нужно обложить внутреннюю стенку реактора (бланкет), и доставать оттуда как-то тритий.
  3. Мощное нейтронное излучение: на ту же вырабатываемую мощность нейтронный поток в ~5-10 раз больше, чем у обычных ядерных реакторов, и сами нейтроны имеют намного большую энергию. Это значит, что если конструкцию реактора сделать из тех же материалов, то срок службы у нее будет 5 лет, а не 50 (как у обычных реакторов).
  4. Поскольку плазма с огромной температурой теряет много энергии на излучение, а камера должна быть большой для обеспечения стабильности — минимальная мощность реактора получается большой, сотни мегаватт.

Стелларатор — «мятый» бублик, где магнитное поле формируется внешними магнитами очень хитрой формы и обеспечивает стабильность плазмы. По сравнению с токамаком — намного более сложная конструкция. По «качеству» удержания плазмы сейчас уже уступает токамакам.
Термоядерная энергетика: надежда человечества?

NIF — National Ignition Facility — идея в том, чтобы сфокусировать свет от 192 импульсных лазеров на мишени, окружающей капсулу с дейтерий-тритиевой смесью. Свет нагревает мишень — она нагревается до миллионов градусов, и равномерно светом «обжимает» капсулу с термоядерным топливом. На хабре кстати 3 года назад писали, что там уже почти все готово.

Проект завершился 30 сентября 2012 года. Оказалось, в компьютерной модели были неточности. По новой оценке, достигнутая в NIF мощность импульса 1.8 мегаджоуля — 33-50% от требуемой, чтобы выделилось столько же энергии, сколько было затрачено.
Термоядерная энергетика: надежда человечества?

Sandy Z-machine Идея такая: возьмем большую кучу высоковольтных конденсаторов, и резко разрядим их через тоненькие вольфрамовые проволочки в центре машины. Проволочки мгновенно испаряются, через них продолжает течь огромный ток в 27 миллионов ампер на протяжении 95 наносекунд. Плазма, нагретая до миллионов градусов — излучает рентгеновское излучение, и обжимает им капсулу с дейтерий-тритиевой смесью в центре (энергия импульса рентгеновского излучения — 2.7 мегаджоуля).

Планируется апгрейд системы с использованием российской силовой установки (Linear Transformer Driver — LTD). В 2013-м году ожидаются первые тесты, в которых получения энергия сравнится с затрачиваемой (Q=1). Возможно, у этого направления в будущем появится шанс сравниться и превзойти токамаки.
Термоядерная энергетика: надежда человечества?

Farnsworth–Hirsch fusor Идея проста — размещаем две сферические сетки в вакуумной камере наполненной дейтерием, или дейтерий-тритиевой смесью, прикладываем между ними потенциал в 50-200 тысяч вольт. В электрическом поле атомы начинают летать вокруг центра камеры, иногда сталкиваясь между собой.

Выход нейтронов есть, но он довольно мал. Большие потери энергии на тормозное рентгеновское излучение, внутренняя сетка быстро раскаляется и испаряется от столкновений с атомами и электронами. Хотя конструкция интересна с академической точки зрения (собрать её может любой студент), КПД генерации нейтронов намного ниже линейных ускорителей.
Термоядерная энергетика: надежда человечества?

Термоядерная энергетика: надежда человечества?Polywell — хорошие напоминание о том, что не все работы по термоядерному синтезу публичны. Работа финансировалась ВМФ США, и была засекречена, пока не были получены отрицательные результаты.

Идея — развитие Farnsworth–Hirsch fusor. Центральный отрицательный электрод, с которым было больше всего проблем, мы заменяем облаком электронов, удерживаемых магнитным полем в центре камеры. Все тестовые модели имели обычные, а не сверхпроводящие магниты. Реакция давала единичные нейтроны. В общем, никакой революции. Возможно, увеличение размеров и сверхпроводящие магниты и изменили бы что-то.

Мюонный катализ — радикально другая идея. Берем отрицательно-заряженный мюон, и заменяем им электрон в атоме. Поскольку мюон в 207 раз тяжелее электрона — в молекуле водорода 2 атома будут намного ближе друг к другу, и произойдет реакция синтеза. Единственная проблема — если в результате реакции образуется гелий (шанс ~1%), и мюон улетит с ним — больше в реакциях он участвовать не сможет (т.к. гелий не образует химического соединения с водородом).

Проблема тут в том, что генерация мюона на данный момент требует больше энергии, чем может получится в цепочке реакций, и таким образом пока энергию тут не получить.

«Холодный» термоядерный синтез (сюда не включен «холодный» мюонный катализ) — давно является пастбищем псевдоученых. Научно подтвержденных и независимо повторяемых положительных результатов нет. А сенсации на уровне желтой прессы были уже не раз и до E-Cat-а Андреа Росси.

Резюме

  1. Термоядерная энергия — вовсе не такая кристально чистая. На единственной реалистичной на данный момент реакции D+T поток нейтронов, который сделает радиоактивными любые элементы конструкции — в 10 раз выше, чем в обычных реакторах. Корпус реактора придется менять раз в 5-10 лет.
  2. Человечество безусловно достигнет Q=10 (получаем в 10 раз больше термоядерной энергии, чем тратим). Этого показателя вероятно удастся достигнуть и на Токамаке (ITER) и на Z-Machine, в 2030-х годах и позднее.
  3. Не смотря на достижение Q=10, термоядерные реакторы будут намного дороже, чем классические урановые из-за более сложной конструкции, более короткого срока службы корпуса и сверхпроводящих магнитов. Термоядерные реакторы также не смогут быть маленькими (как например плавучая мини-АЭС)
  4. Энергии при термоядерной реакции выделяется не так много — на одно деление урана выделяется в 11.5 раз больше энергии, чем при синтезе D+T (которая обладает наибольшим энерговыделением среди реакций синтеза)
  5. Термоядерного топлива как раз не много — тритий очень дорог и дефицитен. Получение его не проще и не дешевле, чем получение плутония из отходов урана или U-233 из тория.
  6. Гелий-3 — никак не помог бы человечеству, даже если бы его были горы на земле. Паразитная реакция D+D все равно будет давать радиацию, а оптимальная температура — миллиард градусов, намного сложнее D+T над которой бьется человечество на данный момент.

Заметили ошибку, неточность или есть дополнение — прошу в ЛС.

Автор: BarsMonster

Источник

* - обязательные к заполнению поля


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js