В прошлый раз мы говорили об использовании фМРТ для чтения мыслей и о том, как связано отслеживание движений глаз с виртуальной реальностью. А что же насчёт методов создания машин, управляемых мозговыми волнами? Что насчёт технологий для распознавания психических заболеваний на молекулярном уровне?
Электроэнцефалография (ЭЭГ) и интерфейс мозг-компьютер
Электроэнцефалография звучит как технология пыток, но худшее, что с вами может случиться – это сон, вызванный скучным экспериментом. ЭЭГ неинвазивна и безвредна. Это метод сначала заставляет людей выглядеть глупо, надев на голову странную конструкцию, а затем измеряет электрическую активность внутри головы.
Как вам может быть известно, нейроны общаются друг с другом, передавая электрические сигналы. Когда один нейрон выдаёт сигнал, его активность чрезвычайно мала. Но когда изменение напряжения случается с тысячами нейронов одновременно, они генерируют электрическое поле, достаточно сильное для того, чтобы оно прошло через череп и было обнаружено на поверхности головы. Эти дурацкие шапочки служат для записи этих сигналов: в них содержатся электроды, измеряющие электрическую активность. Её сначала увеличивают в 10 000 раз (не так-то легко пройти сквозь мягкие мозговые оболочки, череп и скальп! Сигнал становится очень слабым), а затем передают на ЭЭГ-монитор, где можно наблюдать за своими мозговыми волнами (или, если угодно, последовательностью значений напряжений).
ЭЭГ отлично подходит для наблюдения за активностью
Наблюдать за своими мозговыми волнами – это впечатляющее достижение, но что насчёт тех машин, которые контролируются
Так как же эти слабые электрические сигналы, возникающие внутри черепа, превращаются в движения роборуки? Технология основана на идее того, что определённая мысленная активность приводит к появлению определённых рисунков ЭЭГ-сигнала. Устройство запишет разные рисунки из корявых волн, соответствующие, к примеру, поднятию руки, и, допустим, мысленному произношению «да» при взгляде на букву. Чтобы контролировать активность
Клеточная нейробиология и распознавание психических расстройств
ЭЭГ, фМРТ и отслеживание движений глаз – всё это очень интересно, но что на самом деле находится на передовом крае науки? Спойлер: очень мелкие вещички. Нам чрезвычайно важно разобраться в микроскопических процессах, идущих внутри и между нейронами, и именно этим занимается клеточная нейробиология. С клетками можно много чего сделать: сейчас я вот работаю в лаборатории, где мы подсчитываем, сколько клеток зарождается в гиппокампе – нашем центре памяти – в различных условиях (высокоуглеродная диета, упражнения, и т.п.). Поведение клеток можно изучать in vivo – на живом организме, in vitro – в колбе вне упомянутого несчастного живого организма, и in situ – где-то посередине, тип как изучение
Пример эксперимента in vivo – взять мышь, генетически модифицированную так, что интересующие нас нейроны флуоресцируют, проделать дыру в её черепе, и при помощи крутой технологии под названием "двухфотонная микроскопия" наблюдать за флуоресцентными клетками, расположенными относительно глубоко в
Флуоресцентную микроскопию также можно применять, когда во время эксперимента приходится пожертвовать мышью. Тогда
Я слышал, что тебе нравятся антитела, поэтому я добавил немножко антител на твои антитела
И тогда клеточки становятся яркими и блестящими, и мы можем поместить их под флуоресцентный микроскоп и наслаждаться новой партией красивых картинок!
Флуоресцирующий гиппокамп
Клеточная нейробиология внесла существенный вклад в понимание развития психических заболеваний и необходимых для их лечения действий. Благодаря ей мы нашли, что во время депрессии ваш гиппокамп производит меньше клеток, чем обычно, и антидепрессанты обращают этот процесс вспять, стимулируя выработку белков, помогающих нейронам расти; что в некоторых случаях достаточно увеличить скорость нейрогенеза (рождения новых клеток) для уменьшения беспокойства и депрессии; что хронический стресс уничтожает особый белок, играющий важную роль в обеспечении коммуникаций между нейронами, и что антидепрессанты восстанавливают его производство, и мышки чувствуют себя лучше. Мы узнали, что при шизофрении развивается допаминовый дисбаланс, и что у таких пациентов в нейронах неправильно вырабатываются нервные стволовые клетки; также мы смогли найти новые стратегии предотвращения болезни Альцгеймера. Довольно много фактов за короткое время, поэтому вот вам ещё красивая картинка!
И снова красивый гиппокамп
Автор: SLY_G