Всем привет. Сейчас мы с научным руководителем готовим к изданию монографию, где пытаемся простыми словами рассказать об основах цифровой обработки изображений. В данной статье раскрывается очень простая, но в тоже время очень эффективная методика повышения качества изображений – эквализация гистограмм.
Для простоты начнём рассмотрение с монохромных изображений (т.е. изображений содержащих информацию только о яркости, но не о цвете пикселей). Гистограммой изображения будем называть дискретную функцию H, определённую на множестве значений [0;2bpp], где bpp – количество бит, отводимое для кодирования яркости одного пиксела. Хоть это и не является обязательным, но гистограммы часто нормируют в диапазон [0;1], выполняя деление каждого значения функции H[i] на общее количество пикселов изображения. В Табл. 1 представлены примеры тестовых изображений и гистограмм, построенных на их основе:
Табл. 1. Изображения и их гистограммы
Внимательно изучив соответствующую гистограмму можно сделать некоторые выводы и о самом исходном изображении. Например, гистограммы очень тёмных изображений характеризуются тем, что ненулевые значения гистограммы сконцентрированы около нулевых уровней яркости, а для очень светлых изображений наоборот – все ненулевые значения сконцентрированы в правой части гистограммы.
Интуитивно можно сделать вывод, что наиболее удобным для восприятия человеком будет изображение, у которого гистограмма близка к равномерному распределению. Т.е. для улучшения визуального качества к изображению надо применить такое преобразование, чтобы гистограмма результата содержала все возможные значения яркости и при этом в примерно одинаковом количестве. Такое преобразование называется эквализацией гистограммы и может быть выполнено с помощью кода, приведённого в Листинг 1.
Листинг 1. Реализация процедуры эквализации гистограммы
- procedure TCGrayscaleImage.HistogramEqualization;
- const
- k = 255;
- var
- h: array [0 .. k] of double;
- i, j: word;
- begin
- for i := 0 to k do
- h[i] := 0;
- for i := 0 to self.Height - 1 do
- for j := 0 to self.Width - 1 do
- h[round(k * self.Pixels[i, j])] := h[round(k * self.Pixels[i, j])] + 1;
- for i := 0 to k do
- h[i] := h[i] / (self.Height * self.Width);
- for i := 1 to k do
- h[i] := h[i - 1] + h[i];
- for i := 0 to self.Height - 1 do
- for j := 0 to self.Width - 1 do
- self.Pixels[i, j] := h[round(k * self.Pixels[i, j])];
- end;
В результате эквализации гистограммы в большинстве случаев существенно расширяется динамический диапазон изображения, что позволяет отобразить ранее не замеченные детали. Особенно сильно этот эффект проявляется на тёмных изображениях, что показано в Табл. 2. Кроме того, стоит отметить ещё одну важную особенность процедуры эквализации: в отличие от большинства фильтров и градационных преобразований, требующих настройки параметров (апертуры и констант градационных преобразований) эквализация гистограммы может выполняться в полностью автоматическом режиме без участия оператора.
Табл. 2. Изображения и их гистограммы после эквализации
Легко можно заметить, что гистограммы после эквализации имеют своеобразные заметные разрывы. Это связано с тем, что динамический диапазон выходного изображения шире диапазона исходного. Очевидно, что в этом случае рассмотренное в Листинг 1 отображение не может обеспечить ненулевые значения во всех карманах гистограммы. Если всё-таки необходимо добиться более естественного вида выходной гистограммы, можно использовать случайное распределение значений i-ого кармана гистограммы в некоторой его окрестности.
Очевидно, что эквализация гистограмм позволяет легко повышать качество монохромных изображений. Естественно хочется применить подобный механизм и к цветным изображениям.
Большинство не очень опытных разработчиков представляют изображение в виде трёх цветовых каналов RGB и пытаются применить процедуру эквализации гистограммы к каждому цветовому в отдельности. В некоторых редких случаях это позволяет добиться успеха, но в большинстве случаев результат так себе (цвета получаются неестественными и холодными). Это связано с тем, что модель RGB неточно отображает цветовосприятие человека.
Вспомним о другом цветовом пространстве – HSI. Эта цветовая модель (и другие родственные ей) очень широко используются иллюстраторами и дизайнерам так как позволяют оперировать более привычными для человека понятиями цветового тона, насыщенности и интенсивности.
Если рассмотреть проекцию RGB-куба в направлении диагонали белый-чёрный, то получится шестиугольник, углы которого соответствуют первичным и вторичным цветам, а все серые оттенки (лежащие на диагонали куба) при этом проецируются в центральную точку шестиугольника (см. Рис. 1):
Рис. 1. Проекция цветового куба
Чтобы с помощью этой модели можно было закодировать все цвета, доступные в RGB-модели, необходимо добавить вертикальную ось светлоты (или интенсивности) (I). В итоге получается шестигранный конус (Рис. 2, Рис. 3):
Рис. 2. Пирамида HSI (вершины)
В этой модели цветовой тон (H) задаётся углом относительно оси красного цвета, насыщенность (S) характеризует чистоту цвета (1 означает совершенно чистый цвет, а 0 соответствует оттенку серого). При нулевом значении насыщенности тон не имеет смысла и не определен.
Рис. 3. Пирамида HSI
В Табл. 3 показано разложение изображения по компонентам HSI (белые пикселы в канале тона соответствуют нулевой насыщенности):
Табл. 3. Цветовое пространство HSI
Считается, что для повышения качества цветных изображений наиболее эффективно применять процедуру эквализации к каналу интенсивности. Именно это и продемострировано в Табл. 4
Табл. 4. Эквализация различных цветовых каналов
Надеюсь, этот материал показался вам как минимум интересным, как максимум полезным. Спасибо.
Автор: GORKOFF