Эквализация гистограмм для повышения качества изображений

в 7:42, , рубрики: Алгоритмы, обработка изображений, эквализация гистограмм

Всем привет. Сейчас мы с научным руководителем готовим к изданию монографию, где пытаемся простыми словами рассказать об основах цифровой обработки изображений. В данной статье раскрывается очень простая, но в тоже время очень эффективная методика повышения качества изображений – эквализация гистограмм.

Для простоты начнём рассмотрение с монохромных изображений (т.е. изображений содержащих информацию только о яркости, но не о цвете пикселей). Гистограммой изображения будем называть дискретную функцию H, определённую на множестве значений [0;2bpp], где bpp – количество бит, отводимое для кодирования яркости одного пиксела. Хоть это и не является обязательным, но гистограммы часто нормируют в диапазон [0;1], выполняя деление каждого значения функции H[i] на общее количество пикселов изображения. В Табл. 1 представлены примеры тестовых изображений и гистограмм, построенных на их основе:
Табл. 1. Изображения и их гистограммы
Эквализация гистограмм для повышения качества изображений - 1
Внимательно изучив соответствующую гистограмму можно сделать некоторые выводы и о самом исходном изображении. Например, гистограммы очень тёмных изображений характеризуются тем, что ненулевые значения гистограммы сконцентрированы около нулевых уровней яркости, а для очень светлых изображений наоборот – все ненулевые значения сконцентрированы в правой части гистограммы.
Интуитивно можно сделать вывод, что наиболее удобным для восприятия человеком будет изображение, у которого гистограмма близка к равномерному распределению. Т.е. для улучшения визуального качества к изображению надо применить такое преобразование, чтобы гистограмма результата содержала все возможные значения яркости и при этом в примерно одинаковом количестве. Такое преобразование называется эквализацией гистограммы и может быть выполнено с помощью кода, приведённого в Листинг 1.
Листинг 1. Реализация процедуры эквализации гистограммы

  1. procedure TCGrayscaleImage.HistogramEqualization;
  2. const
  3.   k = 255;
  4. var
  5.   h: array [0 .. k] of double;
  6.   i, j: word;
  7. begin
  8.   for i := 0 to k do
  9.     h[i] := 0;
  10.   for i := 0 to self.Height - 1 do
  11.     for j := 0 to self.Width - 1 do
  12.       h[round(* self.Pixels[i, j])] := h[round(* self.Pixels[i, j])] + 1;
  13.   for i := 0 to k do
  14.     h[i] := h[i] / (self.Height * self.Width);
  15.  
  16.   for i := 1 to k do
  17.     h[i] := h[- 1] + h[i];
  18.   for i := 0 to self.Height - 1 do
  19.     for j := 0 to self.Width - 1 do
  20.       self.Pixels[i, j] := h[round(* self.Pixels[i, j])];
  21. end;
  22.  

В результате эквализации гистограммы в большинстве случаев существенно расширяется динамический диапазон изображения, что позволяет отобразить ранее не замеченные детали. Особенно сильно этот эффект проявляется на тёмных изображениях, что показано в Табл. 2. Кроме того, стоит отметить ещё одну важную особенность процедуры эквализации: в отличие от большинства фильтров и градационных преобразований, требующих настройки параметров (апертуры и констант градационных преобразований) эквализация гистограммы может выполняться в полностью автоматическом режиме без участия оператора.
Табл. 2. Изображения и их гистограммы после эквализации
Эквализация гистограмм для повышения качества изображений - 2
Легко можно заметить, что гистограммы после эквализации имеют своеобразные заметные разрывы. Это связано с тем, что динамический диапазон выходного изображения шире диапазона исходного. Очевидно, что в этом случае рассмотренное в Листинг 1 отображение не может обеспечить ненулевые значения во всех карманах гистограммы. Если всё-таки необходимо добиться более естественного вида выходной гистограммы, можно использовать случайное распределение значений i-ого кармана гистограммы в некоторой его окрестности.
Очевидно, что эквализация гистограмм позволяет легко повышать качество монохромных изображений. Естественно хочется применить подобный механизм и к цветным изображениям.
Большинство не очень опытных разработчиков представляют изображение в виде трёх цветовых каналов RGB и пытаются применить процедуру эквализации гистограммы к каждому цветовому в отдельности. В некоторых редких случаях это позволяет добиться успеха, но в большинстве случаев результат так себе (цвета получаются неестественными и холодными). Это связано с тем, что модель RGB неточно отображает цветовосприятие человека.
Вспомним о другом цветовом пространстве – HSI. Эта цветовая модель (и другие родственные ей) очень широко используются иллюстраторами и дизайнерам так как позволяют оперировать более привычными для человека понятиями цветового тона, насыщенности и интенсивности.
Если рассмотреть проекцию RGB-куба в направлении диагонали белый-чёрный, то получится шестиугольник, углы которого соответствуют первичным и вторичным цветам, а все серые оттенки (лежащие на диагонали куба) при этом проецируются в центральную точку шестиугольника (см. Рис. 1):
Эквализация гистограмм для повышения качества изображений - 3
Рис. 1. Проекция цветового куба
Чтобы с помощью этой модели можно было закодировать все цвета, доступные в RGB-модели, необходимо добавить вертикальную ось светлоты (или интенсивности) (I). В итоге получается шестигранный конус (Рис. 2, Рис. 3):
Эквализация гистограмм для повышения качества изображений - 4
Рис. 2. Пирамида HSI (вершины)
В этой модели цветовой тон (H) задаётся углом относительно оси красного цвета, насыщенность (S) характеризует чистоту цвета (1 означает совершенно чистый цвет, а 0 соответствует оттенку серого). При нулевом значении насыщенности тон не имеет смысла и не определен.
Эквализация гистограмм для повышения качества изображений - 5
Рис. 3. Пирамида HSI
В Табл. 3 показано разложение изображения по компонентам HSI (белые пикселы в канале тона соответствуют нулевой насыщенности):
Табл. 3. Цветовое пространство HSI
Эквализация гистограмм для повышения качества изображений - 6
Считается, что для повышения качества цветных изображений наиболее эффективно применять процедуру эквализации к каналу интенсивности. Именно это и продемострировано в Табл. 4
Табл. 4. Эквализация различных цветовых каналов
Эквализация гистограмм для повышения качества изображений - 7
Надеюсь, этот материал показался вам как минимум интересным, как максимум полезным. Спасибо.

Автор: GORKOFF

Источник

* - обязательные к заполнению поля


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js