3D-технологии все чаще оказываются в центре внимания крупных российских промышленных выставок, что отражает готовность предприятий к внедрению инновационных 3D-решений в свои производственные цепочки. Так, на выставке «Металлообработка-2018» аддитивные технологии впервые были представлены на отдельной площадке; цифровое производство стало главной темой Международной промышленной выставки «Иннопром», которая прошла в июле 2018 в Екатеринбурге.
Для машиностроения, как одной из ключевых отраслей российской экономики, исключительно важны разработки нового оборудования и применение передовых решений. 3D-технологии всецело отвечают этим потребностям. Совершенствуясь, они обеспечивают все большую эффективность, позволяя предприятиям сократить и упростить технологический процесс и оптимизировать расходы на производство.
К примеру, создание прототипа на 3D-принтере займет не месяцы, как на традиционном производстве, а всего несколько часов. Значительно экономятся временные затраты на доработку конструкции и запуск продукта в серийное производство, и, соответственно, снижается стоимость всего проекта. Благодаря применению 3D-сканеров и программного обеспечения для реверс-инжиниринга и контроля геометрии затраты времени и средств сокращаются в среднем в 1,5 раза.
Преимущества 3D-печати
- Изготовление деталей с геометрией любой сложности, что оставляет далеко позади возможности традиционных методов.
- Оптимизация таких параметров изделий, как точность и прочность, а также снижение массы за счет создания супертонких стенок, внутренних каналов и бионических структур.
- Ускорение и снижение стоимости производственного процесса: нет необходимости использовать дорогостоящую оснастку, а в отдельных случаях – мехобработку.
- Повышение рентабельности изготовления мелкосерийной и кастомизированной продукции.
- Снижение рисков и ошибок проектирования, в том числе за счет возможности изменения конструкции на поздних этапах проектирования.
- Управление физико-механическими свойствами продукта благодаря использованию высокотехнологичных материалов.
Задачи, решаемые в машиностроении с помощью 3D-печати
- Функциональное тестирование и прототипирование.
- Изготовление технических прототипов для отработки конструкции изделий.
- Проведение технологических экспериментов.
- Проверка изделий на эргономичность.
- Создание мастер-моделей для литья, в том числе по выплавляемым и выжигаемым моделям.
- Быстрое изготовление оснастки.
- Производство формообразующих элементов пресс-форм для литья термопластов и легких материалов.
- Изготовление функциональных деталей для разнообразных агрегатов и узлов.
- Создание сложных конструкций, в том числе цельных, которые ранее собирались из многих элементов.
Технологии 3D-печати для машиностроительных предприятий
- Послойное наплавление (FDM).
- Полноцветная струйная печать (CJP).
- Многоструйная печать (MJP).
- Лазерная стереолитография (SLA).
- Селективное лазерное плавление (SLM).
- Селективное лазерное спекание (SLS).
Преимущества 3D-сканирования
- Высокая скорость сканирующих устройств.
- Точные измерения в реальных условиях эксплуатации.
- Возможность интеграции в автоматизированные производственные системы.
- Измерение любых объектов, независимо от размеров, сложности, материала или цвета.
- Простота и удобство в работе.
Задачи, решаемые при помощи 3D-сканеров и специализированного ПО
- Обратное проектирование (реверс-инжиниринг), получение готовых чертежей.
- Метрологический контроль изделий в процессе изготовления, анализ износа.
- Контроль геометрии, деформации и повреждений изделий.
- Контроль качества.
- Цифровая архивация.
7 историй успеха
Блок гидравлических клапанов
Финальный CAD-файл блока клапанов, готовый к 3D-печати
Конструкция нового блока гидравлических клапанов, разработанного компаниями VTT и Nurmi Cylinders, была оптимизирована c использованием технологии селективного лазерного плавления (SLM), позволившей значительно сэкономить вес, объем и материал. В результате было создано изделие, вес которого на 66% меньше исходной модели. Благодаря инновационному дизайну удалось оптимизировать поток жидкости по внутренним каналам и решить проблему утечки.
Смеситель жидкости с газом
Схема цельнометаллического смесителя, созданного по SLM-технологии. Справа внизу: изначальная модель, состоящая из 12 элементов
Центр быстрого прототипирования Jurec, использующий оборудование SLM Solutions, выполнил проект по усовершенствованию смесителя жидкости с газом. Изначально устройство собиралось из 12 частей, включая 3 крупных элемента – первое и второе фланцевые корпусные соединения и вставка смесителя. Селективное лазерное плавление дало возможность создать единый корпус, сократив количество деталей с 12 до одной. Отпадает необходимость использовать несколько металлов и фланцевых соединений: внутри цельнометаллического корпуса просто нарезается резьба, благодаря чему вес смесителя уменьшился с 1,3 кг до 50 г. В два раза сократилось время производства. И наконец, финансовые затраты на производство уменьшились на 73%.
Больше практических примеров применения 3D-печати металлами
Разветвитель гидроакустической антенны
Слева: мастер-форма из двух частей, напечатанная на 3D-принтере. Справа: извлечение готовой детали из силиконовой формы
ОАО «Концерн «Океанприбор» (Санкт-Петербург) производит системы связи для Военно-Морского Флота РФ, в том числе оборудование с большим количеством мелких элементов, например, разветвитель – один из основных компонентов новой гидроакустической антенны. Для быстрого прототипирования при изготовлении литьевых деталей концерн использует профессиональный 3D-принтер 3D Systems ProJet 660Pro, работающий по технологии CJP. На 3D-принтере выращивается литейная форма, которая затем заливается силиконом. В силиконовую форму можно заливать любой другой материал, в данном случае это полиуретан. В результате предприятие получает своего рода форму для форм – не просто прототип, а опытный образец, готовый к использованию. Реализация проекта с применением стандартных методов потребовала бы нескольких месяцев, но благодаря 3D-принтеру срок создания антенны удалось сократить до трех недель.
Компоненты газотурбинных двигателей
Восковая модель, выращенная методом 3D-печати, и готовое изделие
Американская компания Turbine Technologies, Ltd. разработала модификацию двигателей внутреннего сгорания, на которые устанавливаются турбины высокого давления. Компания приобрела принтер 3D Systems ProJet MJP 3600W для 3D-печати восковых моделей и получает готовую отливку в течение 3-4 дней. Восковые модели теперь изготавливаются непосредственно из 3D-моделей CAD, а литейный цех Turbine Technologies производит компоненты прототипов газотурбинных двигателей с большей точностью и меньшими расходами.
Больше практических примеров использования 3D-печати в литье по выплавляемым моделям
Компоненты и узлы для авиастроения
3D-печать фотополимерами по технологии QuickCast позволяет сэкономить время и деньги, поскольку позволяет обойтись без дорогостоящей оснастки
Компания Vaupell разрабатывает производственные решения для литейных предприятий, которые выполняют заказы аэрокосмической и оборонной отрасли. Благодаря стереолитографическому 3D-принтеру 3D Systems ProX 800 компания смогла радикально повысить эффективность производства. В принтере предусмотрен специальный режим печати фотополимером – QuickCast, при котором воспроизводится тонкостенная внешняя оболочка детали, а пустоты внутри детали заполняются ячеистой структурой. QuickCast-модели заменяют традиционные литейные модели и не требуют дорогостоящей оснастки. Таким образом, компания снизила затраты на литейные модели на 95%.
Контроль геометрии корпуса насоса
Карта отклонений геометрии футеровки
Компания iQB Technologies выполнила проект, включавший 3D-сканирование корпуса насоса после мехобработки и отдельное 3D-сканирование корпуса с футеровкой для контроля толщины покрытия. На первом этапе изделие было оцифровано ручным 3D-сканером Creaform HandySCAN 700, а затем была получена высокополигональная 3D-модель корпуса насоса. Затем специалисты произвели контроль отклонений геометрии в ПО Geomagic Control X. Выявленные отклонения в поверхности покрытия создают дополнительное давление на корпус, следовательно, уменьшают срок его эксплуатации. Проект осуществлен всего за 4 часа.
Больше практических примеров контроля качества с помощью 3D-сканера
Реверс-инжиниринг рабочего колеса гидротурбины
3D-сканирование колеса гидротурбины для последующего обратного проектирования
Компания Dependable Industries (производитель литейных моделей и инструментов из Ванкувера) обратилась к предпринимателю Мэтью Персивалю из 3D Rev Eng для помощи в обратном проектировании отливки рабочего колеса радиально-осевой гидротурбины. Программа для реверс-инжиниринга Geomagic Design X позволяет в течение нескольких часов создавать такие модели со сложными формами, для изготовления которых при помощи традиционных технологий потребовалось бы несколько недель. Благодаря Geomagic Design X время на реверс-инжиниринг было сокращено на 50%, и на 48% уменьшены производственные затраты.
Заключение
У 3D-технологий есть и сдерживающие факторы. Это и высокая стоимость оборудования и материалов, и недостаточная изученность, и нехватка специалистов, и сложности с интеграцией в традиционные технологические цепочки. Аддитивные методы на сегодня не могут вытеснить или заменить классические технологии, но они доказывают экономическую выгоду при прототипировании и мелкосерийном производстве и становятся единственно возможным решением при изготовлении сложных деталей небольшого размера. В конечном итоге, применение технологий трехмерной печати, сканирования и моделирования позволяет быстрее выводить новые продукты на рынок, а значит, повышает конкурентоспособность машиностроительных предприятий.
Автор: iQBTechnologies