- PVSM.RU - https://www.pvsm.ru -

Нейрофизиолог рассуждает о проекте Neuralink и рассказывает о работе мозга «на пальцах»

Нейрофизиолог рассуждает о проекте Neuralink и рассказывает о работе мозга «на пальцах» - 1
Слева — нейрофизиолог Елена Белова, справа — робот-хирург Neuralink

Летом 2019 прошла презентация стартапа Neuralink [1], цель которого — создать интерфейс типа «мозг—машина». Илон Маск рассказал, что компании удалось наработать за несколько лет с момента основания. Представили робота-хирурга, гибкие нити для подключения чипов к мозгу [2] и эффективные алгоритмы обработки сигналов. Мы встретились с нейрофизиологом, чтобы поговорить о том, что же такое Neuralink: бизнес и маркетинг или реальный научный прорыв?

На вопросы терпеливо отвечала Елена Белова — биохимик и биоинформатик по образованию, нейрофизиолог и иллюстратор по роду занятий, старший научный сотрудник Лаборатории клеточной нейрофизиологии человека Института химической физики.

Глупые вопросы задавал Иван Звягин, который прочитал несколько научно-популярных книг о работе мозга [2] и эволюции.

Аудиоверсия разговора — в подкасте Habr Special. Его можно послушать не только на SoundCloud, но и на других платформах [3]

Про Neuralink и его аналоги

Что принципиально нового в нитях и процессорах Neuralink?

Когда в России люди говорят об интерфейсе «компьютер—мозг», чаще всего речь идет о шапочке вместо джойстика и управлении машинкой «силой мысли». А тут все серьезно. Маск собирается расширять возможности лечения и реабилитации, познания того, как устроен наш мозг [2]. Это очень круто.

Нейрофизиолог рассуждает о проекте Neuralink и рассказывает о работе мозга «на пальцах» - 2
Нить А в 16 раз тоньше человеческого волоса

Когда Маск представлял этот проект, он упоминал вещи, которые уже существовали до Neuralink. Среди этих методов — глубокая (глубинная) стимуляция мозга [2], по-английски — Deep Brain Stimulation. Это метод, которым я занимаюсь в своей лаборатории. Есть еще методы, когда людям вскрывают черепную коробку и на поверхность мозга [2] помещают электрод для записи потенциалов и электрической активности с коры головного мозга [2]. В первом случае мы записываем глубокие подкорковые ядра, во втором — кору. В зависимости от того, что и где мы пишем, можно решать разные задачи.

Ничего принципиально нового с точки зрения подхода они не предложили. Это именно уменьшение масштаба, увеличение количества потоков записи и ускорение обработки с возможностью анализировать «на лету», не передавая данные в суперкомпьютеры.

Что не так с ЭЭГ-шапочками?

Шапочка — это очень распространенный доступный метод. Электроэнцефалограмма — один из самых первых методов исследования мозга [2]. Проблема в том, что мы снимаем с поверхности [головы] очень слабый и очень обобщенный сигнал, который очень тяжело анализировать и интерпретировать. Можно сравнить с попыткой понять, что происходит, например, где-нибудь в городе, снимая засветку из космоса. Очень-очень слабый и очень большой сигнал. Конечно, когда где-то происходит синхронная активность большого количества нейронов, на электроэнцефалограмме мы это засечем, но если интересуют более тонкие механизмы, то с такого расстояния и при такой чувствительности сигнала ничего не получится.

Что такое Deep Brain Stimulation?

DBS — это очень большие и очень инвазивные штуки. Чтобы вообразить вообще, что это такое, представьте, что вы раскрутили шариковую ручку и взяли оттуда стержень. Толщина и размер электрода приблизительно как стержень шариковой ручки — около 2 мм в диаметре. Такая большая штука, которая крепится к накладке на кость черепа. Дальше с этим электродом глубоко в мозге [2] человек ходит на протяжении десятилетий, вплоть до смерти. Эта техника позволяет ему существенно облегчить симптомы заболевания, с которым он приходит по показаниям на операцию.

Нейрофизиолог рассуждает о проекте Neuralink и рассказывает о работе мозга «на пальцах» - 3

Обслуживание заключается в том, что в приборе меняют батарейки. Так как это электрическая стимуляция, то нужен источник питания, который приходится заменять. Пока нет достаточно миниатюрного и достаточно мощного источника питания для того, чтобы 30–40 лет он прослужил без замены.

У человека из черепа торчит провод, и дальше хирурги проводят его под кожей к грудине, где ставят стимулятор. Это считается более безопасным вариантом, чем снаружи черепной коробки. Во-первых, было бы не очень красиво. А во-вторых, если вдруг случайно удариться, то область грудины одна из самых защищенных частей тела.

Этой технологии уже почти 30 лет, и с такими устройствами ходят десятки, если не сотни тысяч людей по всему миру. Она очень зарекомендовала себя, и сейчас это один из способов помочь людям, которым больше ничего не помогает — ни медикаментозно, ни инвазивно.

На электродах есть покрытие, изоляция, и от 4 до 12 контактов, в зависимости от марки конкретного прибора и назначения. Они отличаются по длине активной области, которую можно стимулировать. Контакты позволяют 30 лет получать хорошее качество стимуляции, но о записи речи не идет. То есть там не нужно высокое сопротивление, которое позволит посылать электрический сигнал в маленькую область. Это просто стимуляция.

Почему сигнал от мозга к электродам со временем ухудшается?

Есть много техник, которые позволяют чувствительно записывать сигнал. Вопрос в размера прибора, который позволяет его записать. В Neuralink смогли сделать миниатюрные электроды и утверждают, что при всей своей миниатюрности соотношение «сигнал/шум» у них достаточный, чтобы получать хорошую запись. Отдельный вопрос будет в том, насколько долго они смогут получать эту запись без ухудшения качества сигнала, потому что мозг [2] биохимически активен и может влиять на сопротивление датчика, чем датчик меньше, тем больше шансов что что-то пойдет не так.

Neuralink — это маркетинг и бизнес или правда про движение науки вперед?

Я как ученый вижу тут гигантский ресурс для фундаментальной науки.

Есть две большие области в нейробилогии. В первой мы изучаем животных. Но они устроены проще, поэтому многие эксперименты очень тяжело проводить. Скажем, обезъяна не может артикулировать и произносить слова, и мы не знаем, как у нее устроены моторные области, которые связаны с языком и голосовыми связками во время речи.

Нейрофизиолог рассуждает о проекте Neuralink и рассказывает о работе мозга «на пальцах» - 4
Лабораторная крыса Nueralink с интерфейсом USB на голове

Когда мы говорим о получении данных о человеке, то сталкиваемся с огромным количеством субъективного опыта и очень жесткими этическими требованиями и очень слабыми технологиями, которые опробованы и одобрены для применения на людях.

Чтобы что-то узнать про человеческий мозг [2], можно пользоваться записями его электрической активности, которые делают почти во время почти всех операций по медицинским показаниям. Чаще всего речь идет о двигательных расстройствах и глубокой стимуляции мозга [2].

Сейчас они [Neuralink] говорят о том, что производительность их чипов и объем получаемых данных существенно увеличены. Это очень крутой задел для того, чтобы получить что-то действительно интересное.

Как Neuralink не повредить подвижный мозг, внедряя кучу нитей?

Нейрофизиолог рассуждает о проекте Neuralink и рассказывает о работе мозга «на пальцах» - 5
Для впечатлительных: на картинке не мозг [2], а желе, которое его симулирует. Робот и нити настоящие

Основная проблема с операциями на мозге [2] в том, что он пронизан сосудами. Сосуды повреждать очень нехорошо, кровоизлияние в мозг [2] — это очень неприятная штука, которая может привести к микроинсульту или смерти. Избежать сосудов — это первая самая важная задача, которая говорит о безопасности всей процедуры. Хотя она ничего и не говорит об эффективности.

Дальше возникает вопрос фиксации этих электродов. Если говорить про глубинную стимуляцию, то электрод закрепляется прямо на черепе — там просверленное отверстие, в него специальным образом прикручивается и очень жестко фиксируется накладка, в которой абсолютно жестко фиксируется этот электрод.

С гибкими нитями пока не очень понятно. У взрослого человека подвижность мозга [2] ограничена. У маленьких детей мозг [2] может существенно меняться в диаметре. Я подозреваю, что вблизи крупных сосудов мозг [2] пульсирует сильнее, чем вдали от них. Тем не мене можно постараться зафиксировать электрод так, чтобы он плюс-минус был в той же самой области. Хороший вопрос — насколько те электроды, которые предлагает Маск, смогут находится вблизи тех нейронов с которых ведется запись?

Когда мы [методом DBS] пишем электрическую активность внутри мозга [2] человека, бывает что человек двигает рукой или чихает, и кончик электрода смещается совсем чуть-чуть, и все — мы только-что «видели» нейроны, а теперь перестали. Или наоборот никакого нейрона вблизи электрода нет, но потом человек что-то делает, и нейрон появляется, а мы видим существенную активность: потенциалы действия на записи, все прекрасно.

Насколько эти процессы могут повлиять на локализацию, фиксацию гибкого электрода в определенной точке — это хороший вопрос. Судя по тому, что было на презентации, у них часто от двух или трех контактов пишется один и тот же нейрон. Такая конфигурация позволяет в случае чего перестать писать этот нейрон с одного из контактов, но еще два останется. Плотность позволяет дублировать информацию.

Когда речь идет о крупных электродах, то, действительно, есть некоторое повреждение мозга [2] вблизи электрода и нарастание соединительной ткани. Что касается вот этих маленьких, тоньше волоса, нитей, то мы пока не знаем, как мозг [2] на это реагирует. Но чем мельче девайс, тем меньше изменений будет связано непосредственно с тем, что он находится где-то вблизи нервных тканей. Есть некоторый шанс, что последствия от вживления таких тонких нитей будут пренебрежимо малы по сравнению с возможностями, которые они могут дать.

Поможет ли Neuralink взаимодействовать с виртуальными объектами на экране напрямую, а не с помощью курсора мыши?

Такой вариант не исключен. Для этого внутри нервной системы должна обособиться группа нейронов, которая будет специализированно управлять движением этого объекта.
Скажем, когда человек учится управляться с инструментами, на определенном этапе развития навыка они становятся как бы продолжнеием рук человека. В моторной коре появляются специализированные нейроны, которые управляют тонкой моторикой, необходимой для работы с таким инструментом. Если предположить, что чип Neuralink позволит считывать сигнал с таких нейронов напрямую, то движения рукой уже не нужны, вероятно, мы сможем сопоставить определенные паттерны активности нейрона и движения инструмента и управлять инструментом уже с помощью чипа.

Когда мы двигаемся, нам очень важна двигательно-сенсорная обратная связь. Внутри мышц есть огромное количество сенсорных входов, которые говорят о том, насколько натянута сейчас мышца, сколько мускульных систем напряжено, с какой скоростью и какие отделы мышц у нас напрягаются. Когда идет речь о виртуальном объекте, скорость его движения мы можем оценивать только глазами. Это полезно, но это не то же самое, что осязание.

Какие заболевания купирует DBS и потенциально сможет Neuralink

Кажется, первое заболевание, с которым можно справиться методом электростимуляции мозга [2], и который был одобрен FDA, — это болезнь Паркинсона. У людей с этим заболеванием происходит отмирание дофаминовых нейронов. Они с трудом начинают движения, очень медленно и тяжело двигаются, у них начинается тремор.

Есть лекарственная терапия, и когда она в какой-то момент перестает помогать (а она перестает), показана такая операция. Фактически, если говорить совсем просто, мы вносим помеху в то место, которое осложняет людям жизнь. Без стимуляции сигнал от этой области просто не поступает, а так он поступает с помехой, и человеку становится проще.

Есть еще несколько двигательных расстройств, которые купируются стимуляцией тех же структур и тоже помогают. Это прежде всего дистония, когда у людей наоборот патологические движения: сокращения определенных мышц, подергивания. Если в этом случае проблема не с нервами, а с мозгом [2], то такую операцию можно провести.

Сейчас активно изучается возможность помогать людям с депрессией, с обсессивно-компульсивным расстройством и с тем, что ближе уже к эмоциональной сфере. Но пока это теоретические исследования, тестовые протоколы, то есть не рутинная клиническая процедура, а поиски способов воздействия и проверка активностей.

Смог бы Neuralink помочь Стивену Хокингу?

Когда речь идет о проблемах с двигательной системой, бывает два разных источника проблем: нервная система и мышцы. Когда проблема начинается с мышц, то постепенно, чаще всего из-за иммунного ответа, мышцы начинают деградировать. Мышечная ткань сокращается, и ее невозможно нарастить дальше. Это не проблема нервной системы, это проблема мышцы, то есть нужно выращивать другую мышцу из других генетических субстратов. А это уже вопрос к генной инженерии, а не к Neuralink. Надеюсь что когда-нибудь эту проблему тоже удастся решить, но не сейчас.

Про нейропротезы

Как работают бионические протезы

Все системы интерфейсов «мозг—машина», которые позволяют парализованным людям чем-то шевелить устроены так: есть машины, которые в процессе обучаются декодировать то, что хочет человек. А человек обучается максимально четко слать сигналы от той области, в которой идет запись. Нейроны вблизи этих контактов могут перестроиться в зависимости от того, какую задачу решает мозг [2]. Если бионическую руку нужно протянуть и взять чашку, мозг [2] начинает перестраиваться, пусть даже изначально эти нейроны отвечали за что-то другое. Эта взаимная приладка, которая позволяет человеку шевелить бионической рукой, в чем-то похожа на то, как он шевелил перед этим своей собственной.

Существуют ли нейропротезы с обратной связью?

Помимо Илона Маска проблемами людей, которые потеряли возможность двигаться, занимается огромное количество специалистов. Биопротезы, нейропротезы — это стремительно развивающиеся области. Технологии позволяют делать все более новые и более сложные вещи, в том числе сейчас идут испытания бионических рук с возможностью дать обратную связь. То есть человек может с помощью бионической руки прикоснуться к поверхности или схватить объект, а сенсоры с нее дают информацию обратно. Но там ситуация такая, что остаются здоровые нервы, и к ним фактически прикрепляются датчики бионической руки, а дальше по нервам информация отправляется в мозг [2] — через те каналы, которые уже есть, предрасположены, предтринерованы и сформированы.

Насколько я поняла, в Neuralink хотят свои устройства расположить в двух местах: в моторной и в сенсорной коре. И прямо на кору подавать сигнал. Для того чтобы это работало, нужно очень хорошо все подобрать и очень хорошо протестировать. Мы сейчас плохо себе представляем, каким образом и на какой нейрон давать стимуляцию, каким паттерном, как должны выглядеть эти электрические импульсы, чтобы та связь, которую мозг [2] получает, соответствовала тому что происходит в реальном мире. И насколько нейрон в состоянии обучится тому, что этот паттерн задан снаружи, а не генерируется изнутри нейросети.

Может ли человек ощущать протез настоящей частью себя?

Да, он [со временем] начинает ощущать протез. Я не имею такого опыта и надеюсь, что никогда его не получу, но, мне кажется, что это похоже на очень-очень онемевшую руку, в которую начинает постепенно возвращаться чувствительность: она вот такая еще слабая, еще плохая, но уже что-то есть. Это намного лучше, чем когда сигнал не идет совсем и человек по тому, что он видит, не может понять: бионическая рука сейчас сжимает бутылку так, что она выпадет, или так, что треснет и разобьется.

Сколько времени нужно, чтобы ощутить фидбэк от нейропротеза?

Это очень зависит от контекста. Когда речь идет о человеке, которому только что ампутировали руку (из-за опасности заражения крови, например), то, если сразу «по-живому» пришить к этим нервам датчики и сразу давать обратную связь — это оптимальный вариант. Эти нервы фактически еще встроены в сеть, и сколько времени их придется переобучать, будет зависеть от того насколько в принципе человек хорошо обучаем. Мне кажется, речь идет о времени порядка двух — трех месяцев для того, чтобы научится этим протезом хотя бы в каком-то виде пользоваться, и в районе года — для того, чтобы пользоваться им уже без существенного напряжения. Возможно я ошибаюсь, таких исследований пока очень мало и это единичные случаи, на которых мы не можем сказать какую-то статистику.

Сможет ли мозг справиться с глубокими апгрейдами тела, как в Cyberpunk 2077? Третьей рукой, например, или глазом.

Нейрофизиолог рассуждает о проекте Neuralink и рассказывает о работе мозга «на пальцах» - 6
Кадр из игры Cyberpunk 2077

Это будет зависеть от того, в каком возрасте человеку эту третью руку присобачить. Когда происходит взаимонастройка сетей, есть некоторые критические окна, когда нейроны находят связи с другими структурами в других ядрах, для того чтобы максимально эффективно выполнять какие-то цели, задачи, движения, и там постоянно идут потоки обратной связи. Если в этот критический период что-то пошло не так, человек часто просто лишается возможности, например, управлять рукой, если он лишен руки. Или воспринимать и анализировать зрительную информацию, если у него проблемы с сетчаткой или с глазами. Повернуть все вспять и вернуть человеку зрение, если у него в детстве не было опыта восприятия и обработки зрительной информации, практически невозможно, насколько мы сейчас знаем. Может быть, что-то поменяется в 2077 году, но сейчас дела обстоят так.

Если прямо фантазировать, то если вы хотите помимо своих двух рук еще четыре бионических, то это нужно делать очень-очень рано — в младенчестве. Но тут возникает много этических проблем, потому что ребенок маленький, его никто не спрашивает, и не очень понятно какое такое обоснование должно быть, чтобы решиться на такие воздействия с не очень понятными последствиями в будущем.

Про мозг

Можно ли влиять электричеством на эмоциональную сферу?

Дистония и болезнь Паркинсона — это нарушение деятельности очень глубоких структур мозга [2], которые отвечают за инициацию движения, выбор между несколькими разными двигательными программами. Там совсем рядом находятся эмоциональные области, которые связаны с мотивацией: выбрать и запустить то или иное движение. Фактически, немножко сместив положение электрода, мы уже можем влиять на эмоциональную сферу.

Есть указания на то что у некоторых людей с таким электродом начинаются изменения в сфере связанной с эмоциями и привычками. Вообще болезнь Паркинсона может приводить к тому, что человек становится патологически азартным игроком, который ходит в казино, или у него случаются эпизоды патологической ревности, вспышек гнева и перемен настроения. Иногда такое бывает до лечения и после него снимается. Бывает наоборот: у человека все было в порядке, а потом ему поставили электрод и начали воздействовать на сферу, которая связана с импульсивностью, компульсивностью, реакциями.

Я говорила что в большом стержне DBS несколько разных контактов и несколько разных программ стимуляции. Мы можем менять частоту воздействия и то, какие конкретные контакты будут активны. Можно менять контакты, немного снизить амплитуду или частоту стимуляции — увеличить или уменьшить. Но это всё шаманизм, когда методом проб и ошибок мы пытаемся подобрать, что человеку будет помогать хорошо шевелиться и при этом не будет осложнять ему жизнь.

Существует ли точная карта мозга?

Бывает разная точность. Внутри мозга [2] есть разные структуры: ядра, которые имеют границы, а между ними белое вещество, которое соединяет, собственно, одну структуру с другой. Это скопление нервных клеток, и погрешность 1 мм может существенно повлиять на то, какие мы эффекты получим от стимуляции.

Когда мы говорим о коре, то все немного сложнее. Есть сенсомоторные области, в которых есть топография; есть области, которые связаны с движением или ощущением рук, прикосновений, болевых сигналов; есть ноги; есть лицо. И это все размечено вдоль коры — и сенсорной, и моторной — и возможна перенастройка этих областей. У тех людей, которые по какой-то причине теряют руку, та область, которая отвечала за управление этой рукой, может перестроиться и начать взаимодействие с какими-то другими областями, например с частью лица.

Если мы говорим о коре, сначала нужно посмотреть с какой конкретно зоной и с какими конкретно функциями связаны те нейроны, которые мы можем записывать. И потом уже смотреть: можем ли мы обучить их реагировать так, как нам нужно. То есть можно попробовать переобучать эти нейроны.

Почему нужно быть в сознании во время операции на мозге?

Когда мы вставляем электрод человеку в мозг [2], то должны убедиться, что он получает необходимый ему эффект и при этом не получает никаких побочных. Если человека разбудить и спросить, что он думает, что он чувствует, и есть ли у него какие-то побочные ощущения от стимуляции, это позволяет подобрать более удачное расположение электрода, и просто лучше помочь человеку. Поэтому очень многие операции на мозге [2] проводятся в сознании, именно для того чтобы не сделать хуже. Мы сразу в процессе проверяем тестовую стимуляцию. В этот момент у ученых есть возможность собрать бесценный набор информации о том, как устроен мозг [2] человека и как он работает. Это взаимовыгодная вещь, которая помогает и пациенту, и ученому.

Внутри мозга [2] нет болевых рецепторов — главное, что у пациента есть обезболивание на поверхности кости и кожи. А внутри максимум, что происходит, — это стимуляция, и человек перестает нормально говорить, у него появляется во рту «каша». А мы не хотим, чтобы у человека с электродом была «каша» во рту, и стараемся переставить электрод туда, где каши не будет.

Понимают ли учёные хоть что-то про абстрактные и концептуальные образы?

Чаще всего биомедицинские исследования, связанные с человеком, направлены на помощь тем людям, у которых что-то произошло. А так как никакой биомедицинской задачи для изучения абстракций не стоит, и это скорее просто любопытство, то в таких исследованиях встают этические вопросы. Поэтому с абстракциями все очень сложно. В сравнении с двигательной или зрительной системами мы плохо их понимаем: что там можно и что нельзя? И если мы туда полезем, какие последствия можем вызвать этим вмешательством?

Есть история про «нейроны Дженифер Энистон» и «нейроны Холли Берри». Иногда удается найти такие интересные нейроны, которые реагируют на конкретного человека или на конкретный образ. Это открыли, когда у пациентов с эпилепсией проверяли, где находятся очаги. А очень часто они расположены в височной доле, которая связана с речью и восприятием образов. Вроде как был еще нейрон «Звездных войн», который реагировал не на конкретный образ Дарта Вейдера, а вообще на все вещи, которые имеют отношение к «Звездным войнам». Если представить, что мы можем простимулировать концептуальные нейроны, я предполагаю, что можем и вызывать у человека мысли о Дженифер Энистон, Холли Берри или «Звездных войнах». Но мы можем точно так же сказать это имя, и точно так же этот нейрон возбудится, и будет то же самое. Зачем для этого лезть человеку в мозг [2], не очень понятно.

Можно ли сгенерировать ощущения в теле? Скажем, «почесать» пятку.

Зависит от того, что там с этой пяткой. Если по ней ползает насекомое, то этот сенсорный канал можно попробовать забить, повоздействовать на него и «сказать»: [насекомого] нет, тебе сейчас только сильно нажимают на это место. Но как только ты этот сигнал снимешь, скорее всего непосредственное раздражение на пятке снова даст сигнал, и человек будет говорить: нет, опять чешется.

Можно ли не набирать слова по буквам, а сразу «думать» их?

Вопрос отчасти философский. Исследований, которые бы показали техническую возможность это сделать на нынешнем уровне, нет. Хотя наверняка есть люди, которые в этой области что-то пытаются сделать. Есть вариант, например, снимать сигналы с нервов, которые идут к голосовым связкам, к языку, к губам, и посмотреть, можем ли мы на основе двигательной информации от артикуляционного аппарата что-то понять про то, что человек хочет сказать.

Есть зона Брока́ [4], есть зона Ве́рнике [5], между ними есть проводящие пути, и вся эта система очень сложна для нашего нынешнего понимания. К сожалению, это та самая история, когда как поломать знаем, а как починить — не очень. Ломать проще.

Как люди вообще овладевают языком?

Мои представления о языке и о том, как это все устроено в мозге [2], сформировались на основе книги Стивена Пинке «Язык как инстинкт». Это довольно старая книжка, она была переведена на русский язык в 2009 году, а оригинал вышел в 1994. Пинке продвигает мысль о том, что овладение языком — это инстинкт, то есть внутри мозга [2] есть субстрат, на котором формируется язык. Более того, мы знаем, что если человек до какого-то критического возраста прожил вне языка, он не может им овладеть. Маугли, который где-то в Индии с волками жил до 10–12 лет, был просто не в состоянии после этого овладеть языком как техникой коммуникации. При этом есть критические окна, и для того чтобы овладеть языком очень хорошо, нужно быть в контексте речи и коммуникации до трех лет. После трех уже становится хуже, но человек все еще в состоянии овладеть простыми конструкциями, хотя, скорее всего он не будет «дышать языком».

Когда для освоения языка наступает дедлайн, не очень понятно. Индивидуальные особенности могут влиять, у кого-то эти окна чуть пораньше закрываются, у кого-то попозже. Насколько я понимаю, в районе 8–9 лет поезд уходит.

Можно ли вставить в мозг флэшку и обращаться к ней?

С памятью особенно сложно. При том, сколько сил туда уже зарыто и сколько всего мы знаем, привести все в какую-то понятную концепцию, которую можно рассказать, очень сложно.

Память в мозге [2] это динамическая система, в которой процессы запоминания и забывания находятся в некотором равновесии и при этом они находятся на разных масштабах.

  • Вы помните, что вам продиктовали номер: вы читаете его про себя и набираете — это временная память, вы можете запомнить 7 (плюс-минус два) символа.
  • Есть память эпизодическая, когда человек может рассказать о том, где он вчера был, что он ел, с кем разговаривал.
  • Есть память семантическая, смысловая. Например, вы знаете, что дельфины — это млекопитающие.
  • Есть еще то, что называется недекларативными видами памяти. Когда человек учится водить машину, печатать вслепую на клавиатуре — это тоже память.

Память — очень сложная концепция, особенно если мы говорим о мозге [2], поведении и о том, как мозг [2] взаимодействует с окружающей средой во всех контекстах, которые есть. Но даже когда речь идет об эпизодической памяти и концепциях, мы очень плохо понимаем, как все реализовано в мозге [2].

У нас есть гиппокамп, и внутри этого гиппокампа происходит консолидация долговременной памяти. Когда речь идет об условных рефлексах, мы можем только приблизительно описать процесс событий. О том, как формируется нейрон Дженифер Энистон, мы ничего не можем сказать. О том, что приводит к тому что нейрон Дженифер Энистон сформировался, а нейрон Лии Ахеджаковой — нет, тоже не можем.

Принципиально в мозге [2] нет разделения между носителем информации и процессором, который обрабатывает эту информацию. Каждый раз, когда человек что-то вспоминает, он немного меняет сеть, внутри которой эта информация хранится. При этом память очень сильно зависит от глубины обработки информации, от того насколько вы сжились с ней. Как все это соотносить с флешкой, совершенно не ясно.

Про науку

Интересно ли российскому ученому поработать в Neuralink?

Мне было бы безусловно очень интересно работать в таком проекте. Но не очень пока понимаю, как у них все будет устроено с точки зрения организации и соотношения технических вопросов с фундаментальными. Потому что я люблю фундаментальную науку, мне очень нравятся вопросы «как» и «почему»: «как работает» и «почему так работает», а не «как сделать что-нибудь» и «почему не работает». Это технический проект, в котором есть очень амбициозные по сложности проблемы и задачи, которые нельзя решить без понимания того, как это все [работа мозга] фундаментально на базовом уровне устроено.

Например, как в мозге [2] происходит кодировка тех же самых движений? Когда мы говорим о двигательной коре — это то, что называется высшие моторные нейроны, те, которые отвечают за концепцию движений. Внутри мозга [2] есть еще некоторое количество двигательных зон, которые отвечают за то, чтобы сигнал дошел по нерву до конкретной мышцы. Они находятся в коре головного мозга [2] с переходом в спинной. Там уже конкретно посылается сигнал на конкретную мышцу: для того, чтобы на 45º согнуть палец в такой-то фаланге.

В самой коре осуществляется концепция. И как эта концепция выглядит, как это множество конфликтующих между собой представительств и двигательных программ соотносятся? Вся эта машинерия нам известна очень в теории. Как это все реализовано, и какие есть варианты решения у очень многих технических задач в мозге [2] — это очень интересный вопрос.

Может ли российская наука что-то предложить Neuralink?

У нас не так что бы очень развита нейробиология, здесь не много нейробиологических лабораторий. И большая проблема в том, что оснащение почти любой лаборатории проигрывает оснащению американской или европейской лаборатории. Материально-техническая база у нас чаще всего существенно слабее.

Я бы сказала что Европа и Россия сильны концепциями, у нас много тех, кто занимается теорией. Америка сильна прикладными вещами, они умеют переводить идеи и концепции в работающий продукт, который можно продать, капитализировать, выводить на рынок, биржи и вот это все. Они финансовые гении.

При этом, мне кажется, поток ученых в США набирается, чаще всего из Индии, Китая, Европы. У них, конечно, очень молодая нация, ученых в 4–5 поколении американцев я не так чтобы много знаю. Почти все американцы, которые приезжают, это [этнические] китайцы, корейцы, индусы, ирландцы.

Что касается нас, России, у нас есть преимущество. Здесь не такие серьезные этические комитеты. Чтобы провести в Европе или США исследование, его нужно согласовывать в 10 тысячах инстанций на начальном этапе. А у нас организовать это гораздо проще. У нас гораздо меньше институтов, которые занимаются соблюдением прав в каждой последней запятой и закорючке — что животных, что людей. Не знаю, насколько это хорошо или плохо, но, тем не менее, для науки это некоторый бонус. Потому что то, что сложно и очень дорого проводить в Европе с точки зрения экспериментального исследования, гораздо проще организовать в России.

Второй момент — это теоретические работы: концепции, проверка идей, работа с открытыми базами данных и проверка идей в формате: «Нам пришла в голову такая прекрасная идея, мы посмотрели, что в мире сделали и на основе тех данных, которые собрали не мы, нашли вот такую вот интересную штуку».

Как от экспериментов над животными обычно переходят к людям?

Чтобы провести эксперименты даже на животных, нужно одобрение комиссии. Почти в любом научном учреждении есть этический комитет. Это касается даже мышей. Я не знаю на счет дрозофил, но мне кажется что с мухами и маленькими червячками Caenorhabditis elegans пока еще комиссии не нужны, чтобы над ними проводить эксперименты. А вот если вы хотите вставить в мозг [2] мыши или крысе электрод и посмотреть, как она будет себя чувствовать, нужно одобрение комиссии.

Вы должны доказать, что вы готовы проводить эти исследования и они вам необходимы. То есть, что нет других способов получить информацию, которая вам нужна. Вы проверяете и собираете данные о том, насколько это безопасно, не вызывает ли это каких-нибудь воспалений или еще чего-то такого. Понятное дело, что на 100% застраховаться нельзя, но какие-то доводы у вас должны быть: что вы собираетесь делать, что может пойти не так. Комиссия рассматривает доводы и решает, что исследование в таком виде можно одобрить.

В комиссию входят медики — точно такие же коллеги-ученые, которые руководствуются некими принципами: будет ли животное страдать, насколько эти страдания необходимы, можно ли их сократить. Любая операция на животном — это в общем для него не очень приятный опыт. Мы не можем спросить, но догадываемся.

Когда речь о людях, все сложнее. Комиссия уже не только внутренняя, особенно если речь идет об инновационных исследованиях. Та же самая FDA занимается тем, что рассматривают технологии и лекарственные препараты: все, что касается людей и их здоровья, и оценивает риски. Можно ли конкретно это исследование проводить в том виде, в котором оно есть? Достаточно ли собрано информации на животных?

Дальше, в зависимости от того, что тестируется, иногда все начинается со здоровых добровольцев, на которых проверяют в ограниченной концентрации лекарственные препараты. Иногда, когда речь идет о тяжелых заболеваниях и на здоровом человеке ничего проверить не получится, в группу берут людей с травмой. Например, с переломом позвоночника, который привел к параличу рук и ног. Или раковых больных — химиотерапия часто проверяется на людях, потому что это единственный их шанс на выживание. В этом случае гораздо проще получить одобрение и разрешение даже с некоторыми сомнениями в том, что это будет полностью безопасно.

Что почитать о науке и мозге, если ты не ученый, но интересуешься?

Мне кажется, знакомство с темой начинается с Евгении Тимоновой и «Все как у зверей». Потом люди переходят воронкой на серию книг «Элементы». И если вам уже все понятно на «Элементах» и хочется дальше, вы можете пойти на сайт «Биомолекула [6]» — это научно-популярный сайт для тех, кто хочет разобраться во всех деталях. Там есть статьи про нейропротезирование и осенью появится статься про Neuralink — про то, как там все устроено и для чего нужно. Кроме того, там много материалов по молекулярной биологии, генетике, биохимии, нейробиологии и медицинским прикладным вещам. Например, про будущее кохлеарных имплантов.

Автор: baragol

Источник [7]


Сайт-источник PVSM.RU: https://www.pvsm.ru

Путь до страницы источника: https://www.pvsm.ru/roboty/332864

Ссылки в тексте:

[1] презентация стартапа Neuralink: http://www.youtube.com/watch?v=r-vbh3t7WVI

[2] мозгу: http://www.braintools.ru

[3] на других платформах: https://habr-podcast.com/special/

[4] зона Брока́: https://ru.wikipedia.org/wiki/%D0%A6%D0%B5%D0%BD%D1%82%D1%80_%D0%91%D1%80%D0%BE%D0%BA%D0%B0

[5] зона Ве́рнике: https://ru.wikipedia.org/wiki/%D0%9E%D0%B1%D0%BB%D0%B0%D1%81%D1%82%D1%8C_%D0%92%D0%B5%D1%80%D0%BD%D0%B8%D0%BA%D0%B5

[6] Биомолекула: https://biomolecula.ru

[7] Источник: https://habr.com/ru/post/470531/?utm_campaign=470531&utm_source=habrahabr&utm_medium=rss