- PVSM.RU - https://www.pvsm.ru -

Эта статья — об особенностях керамических конденсаторов, которые проявляются на высоких частотах (порядка десятков, сотен мегагерц и выше). Статья основана на материалах наблюдений и исследований, проводимых специалистами компании Johanson Technology.
Речь в основном пойдет о керамических конденсаторах, годных для применения в:
При производстве таких конденсаторов используются специальные диэлектрики, которые называются NPO или COG. Эти диэлектрики известны тем, что обеспечивают слабую зависимость емкости конденсатора от температуры окружающей среды и приложенного напряжения.
Чаще всего для уменьшения габаритов керамические конденсаторы выполняются в виде многослойных керамических конденсаторов — MLCC, Multilayer Ceramic Capacitor, структура которых показана на следующей картинке:

Одним из мировых лидеров в производстве высокочастотных керамических конденсаторов является компания Johanson Technology [1], материалы которой и послужили основой для этой статьи.
При увеличении рабочей частоты первой «особенной» частотой, с которой сталкиваются исследователи, является частота последовательного резонанса – SRF, Series Resonant Frequency. Как известно из курса физики, это частота, при которой реактивное сопротивление идеального конденсатора компенсируется реактивным сопротивлением последовательно включенной идеальной катушки индуктивности таким образом, что общее сопротивление цепи становится равным нулю. В случае керамического конденсатора явление последовательного резонанса объясняется наличием паразитной индуктивности выводов и обкладок конденсатора. И примечательна SRF в нашем случае следующим:
При дальнейшем увеличении частоты можно наблюдать целый ряд частот, на которых многослойный конденсатор обладает относительно высоким сопротивлением. Такие частоты называют частотами параллельного резонанса – PRF, Parallel Resonant Frequency. Наличие серии параллельных резонансов объясняют наличием паразитных емкостей, включенных параллельно с «DC blocking inductor».
Интересно отметить, что в общем случае, согласно экспериментальным данным, получить грубую оценку частоты первого параллельного резонанса можно, удвоив значение частоты последовательного резонанса.
Другим интересным фактом является то, что можно избавиться от всех нечетных частот параллельного резонанса, включая первую, просто расположив пластины внутренних обкладок многослойного конденсатора не параллельно поверхности печатной платы, а перпендикулярно!
Посмотрите на пример зависимости вносимого ослабления от частоты при двух вариантах расположения обкладок, который приводит Johanson:


На верхней картинке обкладки конденсатора расположены параллельно печатной плате, а на нижней – последовательно.
Предполагается, что исчезновение нечетных частот PRF связано с уменьшением паразитных емкостей между обкладками керамического конденсатора и печатной платой. Но почему при этом исчезают нечетные резонансы и остаются четные? Если у вас есть какие-нибудь мысли по этому поводу – добро пожаловать в комментарии!
Так как частоты SRF и PRF керамических конденсаторов могут лежать в очень широком диапазоне, информация о них становится жизненно необходимой при проектировании электронных устройств.
В своей документации Johanson Technology приводит значения этих частот, причем частота PRF соответствует частоте первого параллельного резонанса (обкладки конденсатора расположены параллельно поверхности платы).
Вот типичные значения резонансных частот для конденсаторов Johanson Technology размера 0402:

И типичные значения резонансных частот для конденсаторов Johanson Technology размера 0603:

Как видим, резонансные частоты перемещаются в область более низких частот при увеличении емкости и уменьшении размеров конденсаторов. А это приводит к сужению диапазона рабочих частот в случае, когда необходимо, чтобы этот конденсатор вел себя подобно… конденсатору!
где L — индуктивность, нГн, x — длина проводника, см, w — ширина проводника, см, h — высота проводника, см;
Если в устройстве используется модуль беспроводной связи Bluetooth, Wi-Fi, GSM, GPS и пр. с внешней антенной, то обычно рекомендуется предусмотреть в антенной цепи места для установки согласующих элементов (placeholders). Это позволяет при необходимости произвести безболезненную настройку высокочастотной части плат. Для упрощения этой задачи Johanson Technology предлагает использовать специальные кассы высокочастотных компонентов, которые делают процесс согласования ВЧ цепей менее трудоемким.
Автор: ЭФО
Источник [2]
Сайт-источник PVSM.RU: https://www.pvsm.ru
Путь до страницы источника: https://www.pvsm.ru/razrabotka-robototehniki/252411
Ссылки в тексте:
[1] Johanson Technology: https://www.johansontechnology.com/index.php
[2] Источник: https://habrahabr.ru/post/325952/
Нажмите здесь для печати.