При разработке или исследовании готовых алгоритмов часто требуется определить качество их работы. Использовать для этой цели данные из реальных источников не всегда возможно, так как их свойства зачастую неизвестны и потому нельзя спрогнозировать результат выполнения исследуемых алгоритмов. В таком случае применяется моделирование данных по одному из хорошо известных законов распределения. Применяя исследуемый алгоритм к модельным данным, можно заранее предположить, каким окажется результат его выполнения. Если он окажется удовлетворительным, можно попробовать применить его и к реальным данным. Естественно, что это относится только к непараметрическим алгоритмам, то есть не зависящим от закона распределения данных.
Чаще всего используется моделирование данных, распределённых по нормальному закону. К сожалению, MS Excel и распространённые статистические пакетаы (SPSS, Statistica) позволяют моделировать только одномерные статистические распределения. Конечно, можно составить многомерное распределение из нескольких одномерных, но только в том случае, если переменные независимы. Если же нужно исследовать данные с зависящими друг от друга переменными, придётся писать программу.
Читать полностью »