Метка «теория множеств»

Краткий синопсис

По образованию я физик-теоретик, однако имею неплохую математическую базу. В магистратуре одним из предметов была философия, необходимо было выбрать тему и сдать по ней работу. Поскольку большинство вариантов не единожды было обмусолено, то решил выбрать что-то более экзотическое. На новизну не претендую, просто получилось аккумулировать всю/почти всю доступную литературу по этой теме. Философы и математики могут кидаться в меня камнями, буду лишь благодарен за конструктивную критику.

P.S. Весьма «сухой язык», но вполне читабельно после университетской программы. По большей части определения парадоксов брались из Википедии (упрощённая формулировка и готовая TeX-разметка).

Введение

Как сама теория множеств, так и парадоксы, ей присущие, появились не так уж и давно, чуть более ста лет назад. Однако за этот период был пройден большой путь, теория множеств так или иначе фактически стала основой большинства разделов математики. Парадоксы же её, связанные с бесконечностью Кантора, были успешно объяснены буквально за половину столетия.

Следует начать с определения.

Что есть множество? Вопрос достаточно простой, ответ на него вполне интуитивен. Множество это некий набор элементов, представляемый единым объектом. Кантор в своей работе Beiträge zur Begründung der transfiniten Mengenlehre даёт определение: под «множеством» мы понимаем соединение в некое целое M определённых хорошо различимых предметов m нашего созерцания или нашего мышления (которые будут называться «элементами» множества M)[1]. Как видим, суть не изменилась, разница лишь в той части, которая зависит от мировоззрения определяющего. История же теории множеств как в логике так и в математике весьма противоречива. Фактически начало ей положил Кантор в XIX веке, далее Рассел и остальные продолжили работу.

Парадоксы (логики и теории множеств) — (греч. image — неожиданный) — формально-логические противоречия, которые возникают в содержательной множеств теории и формальной логике при сохранении логической правильности рассуждения. Парадоксы возникают тогда, когда два взаимоисключающих (противоречащих) суждения оказываются в равной мере доказуемыми. Парадоксы могут появиться как в пределах научной теории, так и в обычных рассуждениях (например, приводимая Расселом перифраза его парадокса о множестве всех нормальных множеств: «Деревенский парикмахер бреет всех тех и только тех жителей своей деревни, которые не бреются сами. Должен ли он брить самого себя?»). Поскольку формально-логическое противоречие разрушает рассуждение как средство обнаружения и доказательства истины (в теории, в которой появляется парадокс, доказуемо любое, как истинное, так и ложное, предложение), возникает задача выявления источников подобных противоречий и нахождения способов их устранения. Проблема философского осмысления конкретных решений парадоксов — одна из важных методологических проблем формальной логики и логических оснований математики.

Целью данной работы является изучение парадоксов теории множеств как наследников античных антиномий и вполне логичных следствий перехода к новому уровню абстракции — бесконечности. Задача — рассмотреть основные парадоксы, их философскую интерпретацию.
Читать полностью »

Не помню, когда я впервые узнал про топологию, но меня эта наука сразу заинтересовала. Чайник превращается в бублик, сфера выворачивается наизнанку. Многие слышали про это. Но у тех, кто хочет углубиться в эту тему на более серьёзном уровне, часто возникают трудности. Особенно это относится к освоению самых начальных понятий, которые по своей сути очень абстрактны. Более того, многие источники, как будто специально стремятся запутать читателя. Скажем русская вики даёт весьма туманную формулировку того, чем занимается топология. Там говорится, что это наука изучающая топологические пространства. В статье про топологические пространства читатель может узнать, что топологические пространства — это пространства снабжённые топологией. Такие объяснения в стиле лемовских сепулек не очень проясняют суть предмета. Я попробую далее изложить основные базовые понятия в более ясной форме. В моей заметке не будет превращающихся чайников и бубликов, но будут сделаны первые шаги, которые позволят в конце концов научиться этой магии.

Впрочем, так как я не математик, а стопроцентный гуманитарий, то вполне возможно, что написанное ниже — враньё! Ну, или по крайней мере часть.

Впервые я написал эту заметку, как начало цикла статей о топологии, для своих гуманитарных друзей, но никто из них читать ее не стал. Исправленную и расширенную версию я решил выложить на хабр. Мне показалось, что здесь существует определенный интерес к этой теме и статей как раз такого рода еще не было. Заранее благодарен за все комментарии об ошибках и неточностях. Предупреждаю, что я использую много картинок.
Читать полностью »

Здравствуйте, читатели. Предложу я вам задачку, которую мне вчера показала одна знакомая.
На каждого гнома из бесконечной очереди надет либо синий, либо красный колпак. Каждый гномик смотрит в спину впереди стоящего так, что первый видит колпаки всех, кроме своего, второй видит всех, кроме себя и первого, и так далее. Каждый гном знает лишь то, что видит, свое положение в очереди и то, о чем они все вместе договорились перед тем, как получить колпаки.
По команде все гномы должны одновременно назвать цвет. Тех, кто не угадал, какой на них колпак, расстр в общем, они не угадывают.
Вопрос: как им договориться, чтобы не угадало лишь конечное число гномов?

Тех, кому интересно и кто на данный момент не хочет предпринимать попытки решения, прошу пожаловать под кат. Статья будет представлять собой рассуждения о задаче и ее «решении». (Любителям математики я советую попробовать решить).
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js