Метка «рекомендательная система»

Я продолжаю цикл статей по применению текстмайнинг-методов для решения различных задач, возникающих в рекомендательной системе веб-страниц. Сегодня я расскажу о двух задачах: автоматическое определение категорий для страниц из RSS-лент и поиск дубликатов и плагиата среди веб-страниц. Итак, по порядку.

Автоматическое определение категорий для веб-страниц из RSS-лент

Обычная схема добавления веб-страниц (вернее, ссылок на них) в Surfingbird такова: при добавлении новой ссылки пользователь должен указать до трёх категорий, к которым принадлежит эта ссылка. Понятно, что в такой ситуации задача автоматического определения категорий не стоит. Однако, кроме ручного добавления, ссылки попадают в базу и из RSS-потоков, которые предоставляют многие популярные сайты. Поскольку ссылок, поступающих через RSS-потоки, очень много, зачастую модераторы (а в этом случае именно они вынуждены проставлять категории) просто не справляются с таким объёмом. Возникает задача создания интеллектуальной системы автоматической классификации по категориям. Для ряда сайтов (например, lenta.ru или sueta.ru) категории можно вытащить непосредственно из rss-xml и вручную привязать к нашим внутренним категориям:

image
image
Читать полностью »

Добрый день! Уже более трех месяцев, как я работаю математиком в компании Surfingbird. Для тех, кто не знаком с этим сервисом, предлагаю посетить наш блог. В силу специфики занимаемой мной должности, я собираюсь публиковать здесь статьи, посвященные математическим вопросам рекомендательной системы веб-страниц.

Первая серьезная задача, с которой я столкнулся, работая в компании — это решение проблемы холодного старта. В этой статье я опишу суть проблемы и основные направления ее решения. Более детальное описание методов намереваюсь впоследствии публиковать в блоге SurfingBird.

image

Постановка задачи рекомендательной системы уже описана Сергеем Николенко в статье Рекомендательные системы: постановка задачи.
В основе большинства рекомендательных систем лежат так называемые методы коллаборативной фильтрации. Наша рекомендательная система не исключение. Все алгоритмы коллаборативной фильтрации опираются только на информацию о рейтингах, проставляемых пользователями, и не анализируют контент ресурсов (в нашем случае веб-страниц). Поэтому, эти алгоритмы работают при достаточно большом количестве рейтингов, как правило это 10-20 рейтингов. Задача выдачи релевантных рекомендаций для новых пользователей и для новых сайтов называется проблемой холодного старта.
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js