Метка «pandas»

Введение

Добрый день, уважаемые читатели.
После написания предыдущего поста про анализ временных рядов на Python, я решил исправить замечания, которые были указаны в комментариях, но при их исправлении я столкнулся с рядом проблем, например при построении сезонной модели ARIMA, т.к. подобной функции а пакете statsmodels я не нашел. В итоге я решил использовать для этого функции из R, а поиски привели меня к библиотеке rpy2 которая позволяетиспользовать функции из библиотек упомянутого языка.
У многих может возникнуть вопрос «зачем это нужно?», ведь проще просто взять R и выполнить всю работу в нем. Я полность согласен с этим утверждением, но как мне кажется, если данные требуют предварительной обработки, то ее проще произвести на Python, а возможности R использовать при необходимости именно для анализа.
Кроме этого, будет показано как интегрировать результаты выдачи работы функции R в IPython Notebook.
Читать полностью »

Введение

Добрый день, уважаемые читатели.
В прошлых статьях, на практических примерах, мной были показаны способы решения задач классификации (задача кредитного скоринга) и основ анализа текстовой информации (задача о паспортах). Сегодня же мне бы хотелось коснуться другого класса задач, а именно восстановления регрессии. Задачи данного класса, как правило, используются при прогнозировании.
Для примера решения задачи прогнозирования, я взял набор данных Energy efficiency из крупнейшего репозитория UCI. В качестве инструментов по традиции будем использовать Python c аналитическими пакетами pandas и scikit-learn.
Читать полностью »

Добрый день уважаемые читатели. В сегодняшней посте я продолжу свой цикл статей посвященный анализу данных на python c помощью модуля Pandas и расскажу один из вариантов использования данного модуля в связке с модулем для машинного обучения scikit-learn. Работа данной связки будет показана на примере задачи про спасенных с "Титаника&quot. Данное задание имеет большую популярность среди людей, только начинающих заниматься анализом данных и машинным обучением.
Читать полностью »

Доброго времени суток, уважаемые читатели.
Как обещалось в предыдущей статье, сегодня я продолжу рассказ о модуле pandas и анализе данных на языке Python. В данной статье хотелось бы затронуть тему быстрой визуализации данных результатов анализа. В этом нам помогут библиотека для визуализации данных matplotlib и среда разработки Spyder.
Читать полностью »

Сегодня речь пойдет о пакете Pandas. Данный пакет делает Python мощным инструментом для анализа данных. Пакет дает возможность строить сводные таблицы, выполнять группировки, предоставляет удобный доступ к табличным данным, а при наличии пакета matplotlib дает возможность рисовать графики на полученных наборах данных. Далее будут показаны основы работы с пакетом, такие как загрузка данных, обращение к полям, фильтрация и построение сводных.
Читать полностью »

Доброго времени суток.

Работая в институте, мне приходится иметь дело с большим количеством полу-структурированной информации. Здесь приставка «полу» значит, что в целом все данные похожи, но, как правило, распиханы в локальных папках на компьютерах у сотрудников, в .xls, .txt или в бинарном формате. Информация представляет из себя данные полученные с различных приборов( датчиков уровня, температуры, скорости течений, атмосферного давления, влажности и так далее до 20-30 различных параметров). Все приборы выгружают данные каждый в своем формате: либо в ascii либо бинарный формат, который потом обрабатывается, и, на выходе, снова получаются ascii. Ну вообщем все как всегда, вы и сами представляете весь этот хаос.

Захотелось мне все это дело запихнуть в одну общую базу данных, что бы не искать нужные данные нужной версии в нужной папке, что занимает крайне много времени. Опыт разработки различных систем (в основном гео-информационных) имеется. Но то, что делалось раньше, содержало в себе исключительно обработанные данные, и в целом все эти системы делались под заказчика. Никакого комплекса автоматизации для самих себя не было.

Обработка всего этого хозяйства — вполне стандартные вещь, ничего нового и интересного: проверка временных рядов на целостность(если нужна – интерполяция), построение кучи различных графиков, запуск различных моделей на этих данных, обработка вывода моделей(снова куча графиков), вывод статистики. О последней я и расскажу в этой статье.

Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js