Метка «обратное распространение ошибки»

Прогресс в разработке нейросетей для машинного обученияВ пятничном номере NY Times опубликована статья о значительных успехах, который демонстрируют в последние годы разработчики алгоритмов для самообучаемых нейросетей. В глубоких структурах есть несколько скрытых слоёв, которые традиционно тяжело было обучать. Но всё изменилось с использованием стека из машин Больцмана (RBM) для предварительной тренировки. После этого можно удобно перенастраивать веса, применяя метод обратного распространения ошибки (backpropagation). Плюс появление быстрых GPU — всё это привело к существенному прогрессу, который мы наблюдаем в последние годы.

Сами разработчики не делают громких заявлений, чтобы не поднимать ажотаж вокруг нейросетей — такой, как в 1960-е годы поднялся вокруг кибернетики. Тем не менее, можно говорить о возрождении интереса к исследованиям в этой области.
Читать полностью »

Привет, в одной из последних лекций по нейронным сетям на курсере речь шла о том, как можно улучшить сходимость алгоритма обратного распространения ошибки в общем, и в частности рассмотрели модель, когда каждый вес нейрона имеет свою собственную скорость обучения (neuron local gain). Я давно хотел реализовать какой нибудь алгоритм, который бы автоматически настраивал бы скорость обучения сети, но все лень руки не доходили, а тут вдруг такой простой и незамысловатый способ. В этой небольшой статье я расскажу про эту модель и приведу несколько примеров того, когда эта модель может быть полезна.

Читать полностью »

Привет, в прошлой статье я рассказал про алгоритм обратного распространения ошибки и привел реализацию, не зависящую от функции ошибки и от функции активации нейрона. Было показано несколько простых примеров подмены этих самых параметров: минимизация квадрата Евклидова расстояния и логарифмического правдоподобия для сигмоидной функции и гиперболического тангенса. Данный пост будет логическим продолжение прошлого, в котором я рассмотрю немного нестандартный пример, а именно функцию активации Softmax для минимизации перекрестной энтропии. Эта модель актуальна при задаче классификации, когда необходимо получить на выходе нейросети вероятности принадлежности входного образа одному из не пересекающихся классов. Очевидно, что суммарный выход сети по всем нейронам выходного слоя должен равняться единице (так же как и для выходных образов обучающей выборки). Однако не достаточно просто нормализировать выходы, а нужно заставить сеть моделировать вероятностное распределение, и обучать ее именно этому. Кстати, сейчас на coursera.org идёт курс по нейросетям, именно он помог углубиться в понимание софтмакса, иначе я продолжал бы использовать сторонние реализации.

Читать полностью »

Привет. Я хочу продолжить тему реализации методов машинного обучения на c#, и в этой статье я расскажу про алгоритм обратного распространения ошибки для обучения нейронной сети прямого распространения, а также приведу его реализацию на языке C#. Особенность данной реализации в том, что реализация алгоритма абстрагирована от реализаций целевой функции (той, которую нейросеть пытается минимизировать) и функции активации нейронов. В итоге получится некий конструктор, с помощью которого можно поиграться с различными параметрами сети и алгоритма обучения, посмотреть и сравнить результат. Предполагается, что вы уже знакомы с тем, что такое искусственная нейросеть (если нет, то настоятельно рекомендую для начала изучить википедию или одну из подобных статей). Интересно? Лезем под кат.

Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js