Метка «Компьютерное зрение»

Приходилось ли вам, перейдя по ссылке на интересный видеоролик на Youtube, обнаруживать, что ради нескольких секунд, где действительно происходит что-то интересное, вы только что потратили нескольк минут на созерцание совершенно бесполезного «мусора» только потому, что автор видео выложил целиком файл с видеорегистратора или смартфона? Количество видеокамер стремительно растёт, а количество людей, способных хотя бы обрезать пару лишних фрагментов, похоже, остаётся постоянным. И проблема не только в нескольких минутах убитого в интернете времени — ведь есть и более серьёзные случаи, например, десятки и сотни часов видео с камер наблюдения, которые иногда приходится просматривать, чтобы раскрыть преступление.

Учёные из университета Карнеги-Меллон разработали эффективный алгоритм выделения наиболее интересных фрагментов видео на основе машинного обучения. Новый алгоритм, названный ими «LiveLight» значительно превосходит аналоги по скорости и качеству работы. LiveLight выделяет характерные фрагменты видео и сотавляет их «словарь», а затем пытается предсказать на их основе следующий кадр. Если это удаётся с достаточной степенью точности, то это значит, что кадр не добавляет практически никакой новой информации и его можно исключить. В отличие от «механических» подходов, реагирующих на любое движение в кадре либо резкое изменение яркости, цвета или контраста, LiveLight достаточно универсален — он хорошо работает и на видео, снятым неподвижной камерой, и на любительской съемке трясущимся смартфоном.


Читать полностью »

Библиотека компьютерного зрения CCV 0.6 с новым классификатором изображений

Для свободной кроссплатформенной библиотеке компьютерного зрения CCV разработан новый классификатор изображений, обученный в свёрточной нейроной сети. Впервые классификатор такого уровня и модели (детектор лиц, детектор автомобилей, детектор пешеходов) выпущены под свободной лицензией.
Читать полностью »

Ура! Организаторы Google Summer of Code приняли проект OpenCV для участия в Google Summer of Code 2014! С 10 марта начался приём заявок от студентов-участников. Давайте разберёмся, что это такое – GSoC, что за проект OpenCV и при чём здесь Itseez. А для начала – мотивирующее видео с результатами прошлого лета.

Читать полностью »

Project Tango от Google: смартфон c 3D сканером пространства

Небольшая группа инженеров ATAP (Advanced Technology and Projects) в компании Google занимается разработкой перспективных технологий. Сегодня она представила свой новый проект Tango. Это очень красивая технология построения 3D-модели окружающего пространства с помощью смартфона.
Читать полностью »

В лаборатории миниатюрных летательных аппаратов Делфтского технического университета (Нидерланды) создан самый маленький в мире полностью автономный летающий робот, который способен избегать столкновений с препятствиями без какого-либо внешнего вмешательства. Он делает это с помощью системы стереоскопического зрения, которая весит всего четыре грамма. Общий вес аппарата — двадцать граммов. Орнитоптер, названный DelFly Explorer, способен продержаться в воздухе до девяти минут.


Читать полностью »

Вычисление фрактальной размерности Минковского для плоского изображения Доброго времени суток читатель. Сегодняшний пост будет посвящен вычислению приближенного значения фрактальной размерности плоского изображения, которая тесно связано с размерности Минковского. Это интересно как минимум по двум причинам. Во-первых оказывается, что размерность ограниченного множества в метрическом пространстве может быть не только целым числом, но и любым не отрицательным. Во-вторых значение размерности контура изображения (а это ограниченное множество в метрическом пространстве) является хорошим признаком. В рамках сегодняшнего поста не предусмотрено исследование робастности этого признака, но давайте рассмотрим показательный пример. Множество различных характеристик клеток опухолей молочной железы, полученное в результате анализа снимков тонкоигольной пункционной биопсии. Множество данных состоит из 30 признаков (поля таблицы) с пометкой злокачественная или доброкачественная опухоль, и одним из признаков является как раз фрактальная размерность ядер клеток опухоли. Под катом вас ждет объяснение смысла фрактальной размерности множества, по возможности доступным языком, алгоритм вычисления приближенного значения этой размерности, его реализация на c# и ряд примеров с картинками. Возможно вы открыли этот пост только из-за картинки справа, это изображение я позаимствовал из инстаграмма Jennifer Selter, и в конце мы вычислим фрактальную размерность, так сказать филейной части Дженифер. Хочется кстати вас попросить ответить на пару вопросов в конце поста.

Читать полностью »

В одном из проектов компании Itseez, связанных с компьютерным зрением, мы используем Raspberry Pi для обработки видео потока с веб-камеры, и недавно столкнулись с проблемой записи видео на флеш-карту. Трудность состояла в том, что ресурсы ЦП съедались другими более важными задачами, однако сохранять видео все же было нужно. Причем предпочтений, каким кодеком сжимать и какой формат использовать, не было, лишь бы это никак не сказывалось на fps (количестве кадров в секунду). Перепробовав большое число программных кодеков от RAW до H.264 (использовалась обертка OpenCV над FFmpeg), пришли к выводу, что ничего из этого не выйдет, т.к. при высокой нагрузке fps проседал с 20 до 5 кадров в секунду, при том что картинка – черно-белая с разрешением 320x240. Немного погуглив, выяснили, что в процессоре Raspberry Pi есть аппаратный кодер с поддержкой стандарта H.264 (насколько мне известно, лицензия приобретена только для него). Плюсом ко всему было то, что взаимодействие с кодером реализовано по стандарту OpenMAX, поэтому было решено взяться за написание кода с использованием OpenMAX, и посмотреть, что из этого получится. Получилось, кстати, очень даже недурно!
Читать полностью »

Автор: Виктор Ерухимов, исполнительный директор Itseez, председатель рабочей группы OpenVX

OpenVX: стандарт компьютерного зренияThe Khronos Group 18 ноября 2013 года представила предварительную спецификацию стандарта OpenVX 1.0 для компьютерного зрения. Поскольку Itseez был одним из инициаторов этой деятельности и активно участвовал в создании спецификации, мы решили рассказать про этот стандарт аудитории Хабрахабра.

Читать полностью »

Область применения компьютерного зрения очень широка: от считывателей штрихкодов в супермаркетах до дополненной реальности. Из этой лекции вы узнаете, где используется и как работает компьютерное зрение, как выглядят изображения в цифрах, какие задачи в этой области решаются относительно легко, какие трудно, и почему.

Лекция рассчитана на старшеклассников – студентов Малого ШАДа, но и взрослые смогут почерпнуть из нее много полезного.

Возможность видеть и распознавать объекты – естественная и привычная возможность для человека. Однако для компьютера пока что – это чрезвычайно сложная задача. Сейчас предпринимаются попытки научить компьютер хотя бы толике того, что человек использует каждый день, даже не замечая того.

Наверное, чаще всего обычный человек встречается с компьютерным зрением на кассе в супермаркете. Конечно, речь идет о считывании штрихкодов. Они были разработаны специально именно таким образом, чтобы максимально упростить компьютеру процесс считывания. Но есть и более сложные задачи: считывание номеров автомобилей, анализ медицинских снимков, дефектоскопия на производстве, распознавание лиц и т.д. Активно развивается применение компьютерного зрения для создания систем дополненной реальности.

Читать полностью »

image

Что такое ABBYY FineScanner

ABBYY FineScanner – программа для iOS-устройств, которая может фотографировать документы и обрабатывать снимки так, чтобы получившиеся электронные копии (по сути – сканы) были удобны для работы – чтения, печати или хранения/пересылки в удобочитаемом виде. О выходе первой версии мы писали здесь.

Фотографии документов, получаемые на мобильных устройствах, обладают различными искажениями по сравнению с изображениями, получаемыми из обычного сканнера. К таким искажениям относятся: цифровой шум, геометрические искажения, вызванные поворотом документа или наличием перспективы, неравномерность в освещенности, расфокусировка, смаз. Далее мы опишем алгоритм, который позволяет автоматически устранить геометрические искажения документа на изображении.

Весь процесс можно разделить на несколько основных этапов:

1) Уменьшение исходного изображения
2) Выбор наиболее информативного канала
3) Предобработка изображения, выделение контуров
4) Детектирование границ и определение углов документа
5) Проверка полученных гипотез
6) Уточнение координат углов документа

Рассмотрим каждый из этапов подробнее.
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js