Вернёмся к уравнению колебаний шара на пружине
В одной из первых статей цикла мы сначала вывели формулу для колебательного движения шара
А затем нашли уравнение движения, для которого эта формула была решением
Здесь
• d2z/dt2 обозначает изменение по времени изменения по времени z(t).
• K – сила пружины, М – масса шара, z0 — равновесное положение.
• ν = √ K/M / 2π
Ключевым шагом для получения последнего уравнения частоты, выраженной через К и М был подсчёт d2z/dt2 для колебательного движения шара z(t) = z0 + A cos [ 2 π ν t ]. Мы нашли, что