Метка «кластерный анализ»

Когда система рекомендаций работает с большим количеством контента, основной задачей становится не фильтрация этого контента, а его ранжирование. Если говорить о новостях — каждый день выходят сотни тысяч статей, тысячи из которых могут затрагивать интересы каждого человека, читающего новости. Но в основном пользователи не читают больше 5-10 статей в день (по данным News360). Какие статьи показать первыми?

Ответ на этот вопрос в News360 ищут уже третий год. Мы нашли уже много разных ответов, но в этом году решили отказаться от концепции, которая была основной на протяжении всех предыдущих лет.

В статье простыми словами постараюсь рассказать о том, почему в News360 сначала несколько лет работали над реализацией и развитием системы кластеризации статей по событиям и ранжирования событий, а затем выбросили этот подход и решили реализовать другой. А также немного о том, как работает News360, что под капотом и где об этом почитать.

News360 - Everything you want to read

Читать полностью »

Зачастую при поиске движущихся объектов на видео будь то методом вычитания фона, временной разности, оптического потока, в итоге мы получаем множество точек, которые после действия вышеупомянутых алгоритмов помечены как изменившие свое положение относительно предыдущего кадра и относящиеся к переднему плану.

image

После такой обработки встает вопрос о сегментации объектов методом кластерного анализа, о котором пойдет речь ниже и собственно его реализация на C++.
Читать полностью »

Задача кластеризации – частный случай задачи обучения без учителя, которая сводится к разбиению имеющегося множества объектов данных на подмножества таким образом, что элементы одного подмножества существенно отличались по некоторому набору свойств от элементов всех других подмножеств. Объект данных обычно рассматривается как точка в многомерном метрическом пространстве, каждому измерению которого соответствует некоторое свойство (атрибут) объекта, а метрика – есть функция от значений данных свойств. От типов измерений этого пространства, которые могут быть как числовыми, так и категориальными, зависит выбор алгоритма кластеризации данных и используемая метрика. Этот выбор продиктован различиями в природе разных типов атрибутов.

В этой статье приведён краткий обзор методов кластеризации числовых пространств данных. Она будет полезна тем, кто только начинает изучать Data Mining и кластерный анализ и поможет сориентироваться в многообразии современных алгоритмов кластеризации и получить о них общее представление. Статья не претендует на полноту изложения материала, напротив, описание алгоритмов в ней максимально упрощено. Для более подробного изучения того или иного алгоритма рекомендуется использовать научную работу, в которой он был представлен (см. список литературы в конце статьи).
Читать полностью »

Введение

Кластерный анализ — задача разбиения определенного множества объектов на группы, называемые кластерами так, чтобы каждый кластер состоял из схожих объектов, а объекты разных кластеров существенно отличались. Данный анализ предполагает следующие цели:

  • Понимание данных путем выявления кластерной структуры.
  • Сжатие данных. Если исходная выборка избыточно большая, то можно сократить её, оставив по одному наиболее типичному представителю от каждого кластера.
  • Обнаружение новизны. Выделяются нетипичные объекты, которые не удаётся присоединить ни к одному из кластеров.

В данной статье будет использоваться метод нечеткой кластеризации c-means. Отличительной особенностью нечеткой кластеризации является тот факт, что каждый объект может относиться к каждому кластеру с определенной степенью принадлежности.

Для анализа будут выбраны 17 крупнейших городов России по населению, в качестве характеристик выступают социально-экономические показатели (демография, занятость населения, зарплата, преступность и т.д.). Результатом будут являться полученные кластеры городов.
image

Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js