Метка «gpgpu» - 2

Недавно я опубликовал статью о распределенном рендеринге на GPU — поступили некоторые вопросы и предложения. Поэтому считаю нужным рассказать о теме более развернуто (и с картинками, а то без картинок статьи практически не читают), тем самым привлечь к этой теме больше читателей.
Думаю, этим вопросом заинтересуются обладатели мощных вычислительных систем: майнеры, геймеры, админы других мощных вычислительных систем.

Многие обладатели мощного железа задумывались над тем, а нельзя ли подзаработать на мощности своей железки, пока она стоит бестолку?

Альтернативное использование мощностей GPU?
Красота моя бестоковая!
Читать полностью »

Ресурса Bright Side Of News ссылаясь на свои источники пишет, что новым руководителем Intel может стать один из основателей и генеральный директор Nvidia — Джен-Сен Хуан (Jen-Hsun Huang).
И тогда сама компания Nvidia может быть приобретена корпорацией Intel.

Известно, что ранее Intel уже делала попытки поглотить Nvidia (после того как AMD поглотила компанию ATI), но сам Джен-Сен Хуан, пользующийся широкой поддержкой совета директоров, не соглашался на условия предлагаемые Intel. Кроме того были большие сомнения, что антимонопольные органы США разрешат данное слияние.
Возможность же получения должности гендиректора Intel может изменить позицию Джен-Сен Хуана.
Читать полностью »

Как создать рендерер, который бы работал даже на компьютере вашей бабушки? Изначально перед нами стояла немного другая задача — создать unbiased рендер для всех моделей GPU: NVidia, ATI, Intel.
Хотя идея такого рендера для всех видеокарт витала в воздухе давно, до качественной реализации, тем более на Direct3D, дело не доходило. В своей работе мы пришли к весьма дикой связке и дальше расскажем, что нас к ней привело и как она работает.

renderbro resource combined
Читать полностью »

в 20:00, , рубрики: CUDA, gpgpu, Nvidia, метки: , ,

При использовании средств параллельных вычислений весьма вероятно может сложиться ситуация, когда алгоритм содержит два таких последовательных этапа: i) каждый j-ый поток сохраняет некоторый промежуточный результат вычисления в j-ой ячейке памяти, а, затем, ii) этот поток должен использовать результаты одного или более «соседних» потоков. Очевидно, что необходимо организовать в коде программы некий барьер по времени, который каждым потоком преодолевается уже после того, как все сохранят свои промежуточные результаты в соответствующих ячейках памяти (этап (i)). В противном случае, какой-то поток может перейти к этапу (ii), пока какие-то другие потоки еще не завершили этап (i). Как это ни прискорбно, но создатели CUDA посчитали, что такой специальный встроенный механизм синхронизации любого числа потоков на одном GPU не нужен. Так как же можно бороться с этой напастью? Хотя Google, судя по подсказкам, и знаком с данным вопросом, но готового удовлетворительного рецепта под свою задачу найти не удалось, а на пути к достижению желаемого результата для новичка (которым я и являюсь) имеются некоторые подводные камни.

Читать полностью »

в 6:45, , рубрики: gpgpu, opencl, python, метки: , ,

В последнее время параллельные вычисления прочно входят в жизнь, в частности, с использованием GPU.

Здесь было много статей на эту тему, поэтому ограничусь лишь поверхностным описанием технологии. GPGPU — использование графических процессоров для задач общего назначения, т.е. не связанных напрямую с рендерингом. Пример — библиотека Nvidia PhysX для расчёта физики в некоторых современных играх. Эта технология выгодна тем, что GPU хороши на параллельном выполнении с множеством потоков. Правда, потоков должно быть много, иначе производительность сильно упадет. Ещё из-за особенностей работы с памятью приходится несколько хитрить с передачей данных из оперативной памяти в видеопамять. Известные реализации: CUDA (Nvidia, только для видеокарт), OpenCL (Khronos Group, для гетерогенных систем) и AMD FireStream. Здесь будет обсуждаться только OpenCL.

Итак, приступим к практике. В качестве языка основной программы выберем Python. Он, конечно, не очень быстр сам по себе, зато отлично работает как «клей» — во многих применениях основной расчёт идёт в OpenCL, а код на Python только «подносит патроны». Существует отличная библиотека PyOpenCL, которой и будем пользоваться.

Читать полностью »

Итак, прошел почти год с момента моего первого поста о программировании видеокарт и страшилок о том, как это все сложно. Теперь настала пора показать, что все не так плохо и как пользоваться этой странной штукой по имени OpenCL, да еще и использовать его главное преимущество, то есть возможность запускать один и тот же код на разных девайсах. А еще я покажу как можно получить на порядок большую производительность обычного процессора практически бесплатно.
Читать полностью »

Пол года назад я искал себе видеокарту, на которой я смог бы заниматься 3d моделированием, и рендерингом на GPU. В связи с появлением на рынке большого числе рендеров на CUDA мне не терпелось приобрести видеокарту с поддержкой CUDA, а именно Nvidia.

Как некоторые уже знают, Nvidia выставляет на продажу видеокарты нескольких моделей Geforce, Quadro, Tesla, ION, Tegra. В этом коротком сравнении упустим ION и Tegra, т.к. предназначены для мобильных устройств и слабые по производительности.

Нам нужна мощь!
Nvidia для профессиональных 3D приложений

Nvidia power...

Читать полностью »

title

Преобразование Хафа служит для поиска на изображении фигур, заданных аналитически: прямых, окружностей и любых других, для которых вы сможете придумать уравнение с небольшим количеством параметров. О преобразовании Хафа написано немало, и данная статья не ставит цели подробно осветить все аспекты. Я лишь объясню общий принцип, останавливаясь на особенностях, мешающих его реализации на GPU «в лоб» и, конечно же, предложу решение. Те, кто знают проблемы и хотят сразу видеть решение, могут пропустить пару-тройку разделов.

Читать полностью »

Краткое содержание: Создан быстрый кодер FVJPEG для сжатия изображений по алгоритму JPEG на видеокартах NVIDIA. Значительное ускорение получено при распараллеливании алгоритма, его реализации и оптимизации с помощью технологии CUDA. По скорости сжатия кодер FVJPEG превосходит все существующие в настоящее время программные и аппаратные решения для компрессии изображений по алгоритму Baseline JPEG.

При сравнении алгоритмов сжатия изображений с потерями, практически всегда обсуждаются степень сжатия и качество получаемой картинки, а вот время компрессии почему-то считается второстепенным показателем. По всей видимости, для большинства приложенийЧитать полностью »

AMD APP В первой части я рассказал о технологии AMD Intermediate Language (IL). В этой статье, как можно догадаться из заголовка, речь пойдет о второй составляющей: AMD Compute Abstraction Layer (CAL). Эти две технологии являются нераздельными друг от друга: невозможно использовать одну, не используя другую. Поэтому для понимания дальнейшего рекомендую ознакомиться с первой частью.

Я постараюсь осветить основные аспекты работы на верхнем уровне с AMD GPU, опишу ограничения данной технологии и возможные проблемы при работе с ней. КомуЧитать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js