Метка «gpgpu»

Intel собирается выпустить серверные процессоры Xeon со встроенной FPGA
Восьмиядерный процессор Xeon

Корпорация Intel планирует включить в состав своих чипов Xeon программируемую пользователем вентильную матрицу (FPGA). FPGA позволяет пользователю переконфигурировать логику работы интегральной схемы, оптимизировав её под решение конкретной задачи. Это позволяет ускорить некоторые вычисления на порядок, или намного снизить энергопотребление. Другими словами, это позволит каждому пользователю создавать на кристалле Xeon собственный сопроцессор, заточенный под конкретные задачи.
Читать полностью »

Введение

Здравствуйте, дорогие читатели.

В данном посте я постараюсь рассмотреть особенности выделения памяти для объектов OpenCL.

OpenCL является кросс-платформенным стандартом гетерогенных вычислений. Не секрет, что на нём пишут программы тогда, когда от них требуется скорость выполнения. Как правило, подобный код нуждается во всесторонней оптимизации. Всякий GPGPU-разработчик знает, что операции с памятью зачастую являются самым слабым звеном в скорости работы программы. Так как в природе существует великое множество аппаратных платформ, поддерживающих OpenCL, то вопрос организации объектов памяти зачастую становится головной болью. То, что хорошо работает на Nvidia Tesla, оснащённых локальной памятью и соединённых широкой шиной с глобальной, отказывается показывать приемлемую производительность на SoC, имеющих совершенно иную архитектуру.

Об особенностях выделения памяти для систем с общей памятью CPU и GPU и пойдёт речь в данном посте. Использование типов памяти Image оставим в стороне и сосредоточимся на наиболее общеупотребительном типе Buffer. В качестве стандарта будем рассматривать версию 1.1, как наиболее распространённую. В начале проведём краткий теоретический курс, а затем рассмотрим несколько примеров.

Читать полностью »

Аннотация

В данной статье хочу рассказать как можно эффективно распараллелить алгоритм BFS — поиск в ширину в графе с использованием графических ускорителей. В статье будет приведен подробный анализ полученного алгоритма. Вычисления выполнялись на одном GPU GTX Titan архитектуры Kepler.

Введение

В последнее время все большую роль играют графические ускорители (GPU) в не графических вычислениях. Потребность их использования обусловлена их относительно высокой производительностью и более низкой стоимостью. Как известно, на GPU хорошо решаются задачи на структурных сетках, где параллелизм так или иначе легко выделяется. Но есть задачи, которые требуют больших мощностей и используют неструктурные сетки. Примером такой задачи является Single Shortest Source Path problem (SSSP) – задача поиска кратчайших путей от заданной вершины до всех остальных во взвешенном графе. Решение данной задачи рассмотрено мной в этой статье. Вторым примером задачи на неструктурных сетках является задача Breadth First Search (BFS) — поиска в ширину в неориентированном графе. Данная задача является основной в ряде алгоритмов на графах. Также она немного проще, чем поиск кратчайшего пути. На данный момент алгоритм BFS используется как основной тест для рейтинга Graph500. Далее рассмотрим, как можно использовать идеи решения задачи SSSP в задаче BFS. Про архитектуру GPU компании Nvidia и об упомянутых алгоритмах уже много написано, поэтому в этой статье я не стану дополнительно писать про это. Так же, надеюсь, что понятия warp, cuda блок, SMX, и прочие базовые вещи, связанные с CUDA читателю знакомы.
Читать полностью »

Аннотация

В данной статье хочу рассказать как можно эффективно распараллелить алгоритм SSSP — поиска кратчайшего пути в графе с использованием графических ускорителей. В качестве графического ускорителя будет рассмотрена карта GTX Titan архитектуры Kepler.

Введение

В последнее время все большую роль играют графические ускорители (GPU) в не графических вычислениях. Потребность их использования обусловлена их относительно высокой производительностью и более низкой стоимостью. Как известно, на GPU хорошо решаются задачи на структурных сетках, где параллелизм так или иначе легко выделяется. Но есть задачи, которые требуют больших мощностей и используют неструктурные сетки. Примером такой задачи является Single Shortest Source Path problem (SSSP) – задача поиска кратчайших путей от заданной вершины до всех остальных во взвешенном графе. Для решения данной задачи на CPU существует, по крайней мере, два известных алгоритма: алгоритм Дейсктры и алгоритм Форда-Беллмана. Так же существуют параллельные реализации алгоритма Дейстры и Форда-Беллмана на GPU. Вот основные статьи, в которых описаны решения данной задачи:
Читать полностью »

image

Предисловие

Доброго времени суток! Сегодня решил поделиться с Вами сокровенным — одним из своих любимых велосипедов.

Начну издалека — довольно долго я работал на одном радиозаводе в Челябинске, и был у нас (вообще и сейчас есть, просто я уже не там) один мега-проект: оптико-электронный модуль для охраны физических объектов. Это такая здоровая штука на поворотной установке, с тремя камерами на все случаи жизни (цветная — дневная, ЧБ светочувствительная — для сумерек, и тепловизор — для ночного наблюдения). Берётся такой модуль, ставится на вышку высотой метров 50 — и можно днём и ночью держать под наблюдением территорию в радиусе 4-5 километров. Подробности писать не стану, не о том пост. Кому интересно — сами найдут.

Разумеется, интересных задачек по обработке изображений было много. Об одной из таких я и хочу рассказать. А именно — как использовать массивно-парралельные вычисления для компенсации дрожания камеры в реальном времени, или почему SURF подходит не всегда. Добро пожаловать под кат.
Читать полностью »

Введение

Я описываю результаты применения способов оптимизации вычислений на CUDA при моделировании плазмы. Вычисления производятся с использованием Java-привязки к CUDA (JCUDA) [1] на GT630 (Kepler). Моделирование происходит как решение задачи Коши — задание значений параметров в начальный момент времени, затем приращение времени и перерасчет всех уравнений, и т.д. многократно. Вычисления происходят в двойной точности (double). Правильность полученных результатов подтверждена вычислениями на CPU без JCUDA.Читать полностью »

Многие из новейших суперкомпьютеров основаны на аппаратных ускорителях вычислений (accelerator). включая две самые быстрые системы согласно TOP500 от 11/2013. Ускорители распространяются так же и на обычных PC и даже появляются в портативных устройствах, что ещё больше способствовует росту интереса к программированию ускорителей.

Такое широкое применение ускорителей является результатом их высокой производительности, энергоэффективности и низкой стоимости. Например, если сравнить Xeon E5-2687W и GTX 680, выпущенные в марте 2012, мы увидим, что GTX 680 в четыре раза дешевле, имеет в 8 раз большую производительность операций одинарной точности и в 4 раза большую пропускную способность памяти, а так же обеспечивает более 30 раз большую производительность в пересчёте на доллар и в 6 раз большую производительность на ватт. Исходя из таких сравнительных результатов, ускорители должны бы использоваться везде и всегда. Почему же этого не происходит?
Читать полностью »

Давным давно, в 2008 году, когда я работал над своей диссертацией меня заинтересовала тема применения сверточных нейронных сетей для задач распознавания изображений. На тот момент они еще не были так популярны как сейчас и попытка найти готовые библиотеки ни к чему не привела — нашлась только реализация на Lush (языке созданном автором сверточных сетей, Яном ЛеКуном). Тогда я подумал, что можно было бы их реализовать на Матлабе используя Neural Network Toolbox. Но столкнулся с невозможностью реализации разделяемых весов в рамках этого тулбокса. И тогда было принято решение написать собственную реализацию.
Читать полностью »

в 9:48, , рубрики: CUDA, gpgpu, release, метки: , ,

image Несколько дней назад состоялся релиз CUDA 5.5. К сожалению, основное число нововведений и удобностей касается владельцев видеокарт с Compute Capability 3.5.

Но есть кое-что, что подойдет всем пользователям основных дистрибутивов Linux — появились репозитории!

Полный список можно посмотреть в официальном pdf. Под катом список того, что мне показалось наиболее интересным.

Читать полностью »

Современному программисту, математику или аналитику часто приходится проектировать, а то и создавать программно-аппаратные комплексы для работы с большими массивами числовых данных. Построение имитационных моделей, прогнозирование, расчёт статистики, управление оперативными процессами, финансовый анализ, обработка экспериментальных данных — везде требуется получить максимальную скорость вычислений на единицу затрат.

При этом большинство ну хотя бы минимально сложных и функциональных систем (во всяком случае, из тех, что встречались лично мне за 8 лет работы в банковской сфере), как правило, гетерогенны — состоят из множества функциональных блоков, как пёстро сшитое лоскутное одеяло, где каждый лоскуток выполняется разным приложением, зачастую даже на различных аппаратных платформах. Почему? Да просто это рационально и удобно. Каждый продукт хорош в своей области. Например, экономисты любят использовать Ms Excel для анализа и визуализации данных. Но мало кому в голову придёт использовать эту программу для обучения серьёзных искусственных нейросетей или решения дифференциальных уравнений в реальном времени — для этого зачастую приобретаются (или уже приобретены компанией) мощные универсальные пакеты, предлагающие гибкий API, или под заказ пишутся отдельные модули. Вот и получается, что результат считать выгоднее в том же Matlab, хранить в таблицах СУБД Oracle (запущенной на кластере Linux), а отчёт показывать пользователям в приложении Excel, работающем как OLE server на Windows. Причём связаны все эти компоненты одним из универсальных языков программирования.

Как выбрать оптимальную среду реализации для конкретной задачи?Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js