О DeepMind на Geektimes не писал разве что ленивый автор. Эта компания действительно выделяется своими достижениями среди прочих организаций, которые работают в сфере ИИ. Самое известный проект DeepMind — AlphaGo, ИИ, специализирующийся на игре в го. В настоящий момент эта система является, пожалуй, наиболее умелым игроком го в мире — как среди людей, так и среди машин.
Но игра в го — лишь демонстрация возможностей ИИ, далеко не единственный проект компании. Сейчас она занимается обучением слабой формы ИИ премудростям навигации. Обычный способ ориентирования в окружающем пространстве с продвижением к нужной цели включает постоянную оценку того, что окружает человека (или животное) с анализом полученной информации. Специалисты DeepMind разработали комплекс нейросетей, которые обучили передвигаться по площадке квадратной формы подобно крысам.
Речь идет о крысах, перемещающихся по такой же площадке. Компьютерная система получила данные о скорости передвижения крысы, основных направлениях движения, расстояния от стен и все прочие параметры. На основе этих данных ИИ выработал практически аналогичный способ передвижения, причем не спонтанный, он основывается на определенных факторах, которые использует при навигации по пространству и крыса.
Интересно то, что компьютерная система разработала специальный слой для навигации, принцип работы которого схож с принципом работы отвечающего за ориентирование в пространстве
У человека за это отвечает несколько групп клеток. Это нейроны, которые активируются, когда человек проходит мимо объектов, которые ранее ему уже встречались. Расположены эти нейроны в гиппокампе — отделе
Специалисты DeepMind считают, что нейросеть при обучении сформировала схожую структуру, только, конечно, цифровую, а не физическую. И в этой же компании утверждают, что лишь нейросети, которые сформировали такие структуры, способны нормально ориентироваться в сложном окружении — не только на квадратной площадке, но и в здании с несколькими помещениями. Более того, нейросети могут адаптировать пути продвижения по такому сложному окружению в том случае, если что-то изменяется (например, закрываются двери или передвигается мебель).
На основе результатов проекта можно сделать несколько выводов. Например, один из них — метод ориентирования в пространстве, выработанный животными, является оптимальным. Нейроны из гиппокампа — отличный способ запоминать путь и прокладывать дорогу среди уже известных объектов после достаточно долгого пребывания в какой-то локации.
Похоже на то, что не только биологические, но и цифровые системы приходят к аналогичным решениям в некоторых случаях.
DOI: 10.1038/s41586-018-0102-6
Автор: Ekaterina_T