В мире инженерного образования существует много отличных курсов, но зачастую программа обучения, построенная на них, обладает одним серьезным недостатком — отсутствием хорошей связности между различными темами. Можно возразить: как же так?
Когда формируется программа обучения, для каждого курса указываются пререквизиты и четкий порядок, в котором надо изучать дисциплины. К примеру, для того чтобы собрать и запрограммировать примитивного мобильного робота, нужно знать немного механики для создания его физической конструкции; основы электричества на уровне законов Ома/Кирхгофа, представления цифровых и аналоговых сигналов; операции с векторами и матрицами для того, чтобы описать системы координат и перемещения робота в пространстве; основы программирования на уровне представления данных, простейших алгоритмов и конструкций передачи управления и т.п. для описания поведения.
Есть ли все это в университетских курсах? Конечно есть. Однако к законам Ома/Кирхгофа мы получаем термодинамику и теорию поля; помимо операций с матрицами и векторами приходится разбираться с Жордановыми формами; в программировании изучать полиморфизм — темы, которые не всегда нужны для решения простой практической задачи.
Университетское обучение экстенсивно — учащийся идет широким фронтом и зачастую не видит смысла и практической значимости знаний, которые получает. Мы решили перевернуть парадигму университетского обучения STEM (от слов Science, Technology, Engineering, Math) и сделать такую программу, которая опирается на связность знаний, допуская наращивание полноты в будущем, то есть подразумевает интенсивное освоение предметов.
Читать полностью »