Всем привет.
Поработав в 12 стартапах в сфере машинного обучения, я сделал восемь полезных выводов о продуктах, данных и людях.
Все стартапы были из разных сфер (финтех, биотехнологии, здравоохранение, технологии обучения) и на разных этапах: и на этапе pre-seed, и на этапе приобретения крупной компанией. Менялась и моя роль. Я был стратегическим консультантом, главой отдела анализа данных, заваленный делами штатным сотрудником. Все эти компании старались создать хороший продукт, и многим это удалось.
За время работы я пришел к таким выводам:
Продукт важнее ИИ
Эти стартапы разрабатывают продукты, а не изучают искусственный интеллект. Меня, как убежденного математика, сначала больше интересовало машинное обучение и создание новых методов и алгоритмов.
Вскоре я понял, что даже точные модели машинного обучения не ценны сами по себе. Ценность ИИ и машинного обучения напрямую зависит от ценности продукта, в котором они используются. Цель стартапа – научиться создавать продукты, основанные на машинном обучении.
При таком подходе иногда выясняется, что машинное обучение – не самый эффективный инструмент. Иногда дело не в поставленной задаче, а в процессе решения. Даже в таких ситуациях полезно обратиться к ученым: они используют научный, основанный на данных подход. Тем не менее, не тратьте время на ИИ там, где нужно исправить процесс. Читать полностью »