Этот пост про относительно новый метод обработки сигналов, описанный в статье Adaptive data analysis via sparse time-frequency representation, а также про крохотную, но сбившую лично меня с толку, ошибку. Сию статью опубликовали в 2011 году профессора прикладной математики Калифорнийского Технологического института Томас И. Хоу и Зуокьянг Ши, и, вероятно, к моменту, как вы это читаете, они уже её поправили.
На эту статью я наткнулся в поиске различных методов частотно-временного анализа нелинейных и нестационарных сигналов — в моем случае ультразвуковых сигналов от передвигающихся форменных элементов крови в сосудах человека. Суть такого анализа состоит в отслеживании изменений характеристик сигнала, иначе говоря, мы хотим знать зависимость составляющих сигнал частот от времени. За исключением широко распространенных методов — спектрального и вейвлет-анализа, были найдены такие методы как EMD (разложение на эмпирические моды) и синусоидальное моделирование, о котором далее пойдет здесь речь.
Метод эмпирических мод довольно прост в применении, однако не особо развит с точки зрения обоснованности полученных результатов. Томас Хоу и Зуокьянг Ши пошли дальше в развитии математического аппарата и предложили свой метод синусоидального моделирования сигнала. Его идея заключается в разреженной декомпозиции сигнала на гармоники с гладкими амплитудами. Какой результат мы ожидаем получить — на картинке выше. В данном случае раскладывался сигнал, полученный функцией f(t) = 6t + cos(8πt) + 0.5 cos(40πt). Разложение сигнала, естественно, не уникально, поэтому был введен критерий минимума составляющих гармоник, и задача сформировалась следующим образом:
Читать полностью »