Рубрика «звезды» - 7

«Хаббл» увидел звезду, «стреляющую» шарами плазмы - 1

Наша Вселенная удивительна. Количество необычных объектов в ней не поддается никакому подсчету. Астрономы Земли постоянно находят что-то новое и интересное, иногда сообщая об этом простым смертным. На этот раз ученые при помощи телескопа «Хаббл» увидели звезду, рядом с которой периодически выбрасываются огромные шары плазмы с огромной скоростью в 190 000 км/ч. Звездная пушка стреляет каждые 8,5 лет. Этот процесс продолжается минимум 400 лет.

Шары плазмы стали загадкой для астрономов, поскольку исходный материал не может выбрасываться наблюдаемой звездой, V Hydrae. Эта звезда — умирающий красный гигант, который расположен в 1200 световых лет от Земли. Звезда уже потеряла половину своей массы, имеет сравнительно низкую температуру верхних слоев и выбрасывать шары плазмы размером с Марс не в состоянии. Астрономы предположили, что источник шаров — невидимая с Земли звезда, которая находится рядом с красным гигантом.
Читать полностью »

Почему недостаточно сказать «да будет свет».

Наблюдайте красоту жизни. Смотрите на звёзды и на то, как вы бежите вместе с ними.
— Марк Аврелий

Представьте себе знакомое вам ночное небо. Вдалеке от городов в безлунную ночь, в самых тёмных из виденных вами мест. Будто вы ложитесь на траву, и смотрите на небеса. Вы смотрите вверх, воздух прохладен, и небеса чисты: никаких туч не видно.

Что вы увидите?

Невидимы ли первые звёзды Вселенной? - 1

Планеты, звёзды, яркие и тусклые, и даже Млечный путь. Но, возможно, самое удивительное в ночном небе, это не присутствие нескольких разбросанных огоньков, но то, что почти в любом направлении небо тёмное.

Если задуматься об этом, то в происходящем довольно мало смысла.
Читать полностью »

Могут ли незажёгшиеся звёзды или звёздные останки вновь зажечь свет во Вселенной?

Один небольшой огонёк создаёт пространство, в котором не может существовать тьма. Свет изгоняет тьму. И как бы она не пыталась, тьма не может покорить свет.
— Дональд Л. Хикс

И хотя кажется неизбежным, что тьма, в конце концов, выиграет, когда последний фотон света покинет поле зрения, этот момент настанет гораздо позже, чем кто-либо ожидает. Среди присланных вами вопросов выделяется следующий, заданный Эндрю Доддсом:

Я обратил внимание на одну звёздную систему – Люман 16 – состоящую из двух коричневых карликов. Мне интересно – возможно ли, что такие системы объединятся друг с другом после падения по спирали, и сформируют красного карлика? И если да, значит ли это, что у нас будут звёзды даже через много триллионов лет?

Сегодня легко смотреть на Вселенную, особенно со всем доступным нам оборудованием, и заключать, что нашему взору предстаёт почти неограниченный запас материала. И чем дольше мы смотрим, тем больше видим!

Спросите Итана №86: последний свет во Вселенной - 1
Читать полностью »

Астрономы предложили новое объяснение динамики светимости звезд со «сферой Дайсона» - 1

В октябре прошлого года была открыта звезда KIC 8462852, которая находится на расстоянии 1480 световых лет от Земли. Особенность этого объекта в неравномерном и очень быстром изменении светимости. Астрономы, открывшие звезду, посчитали, что такая динамика светимости может объясняться наличием каких-то объектов на орбите KIC 8462852. Было высказано предположение, что эта звезда может находиться в сфере Дайсона.

Сейчас схожая динамика светимости замечена еще у одной звезды, EPIC 204278916. Диаметр этого объекта равен диаметру Солнца. Но масса звезды, как считают специалисты, в два раза меньше массы нашего светила. Звезда EPIC 204278916 была обнаружена в 2014 году при помощи телескопа «Кеплер». С тех пор целая команда астрономов, возглавляемая Симоной Скаринги (Simone Scaringi) из Института внеземной физики общества Макса Планка (Германия), исследует динамику светимости этой звезды. Эта характеристика еще более необычная, чем в случае звезды KIC 8462852.
Читать полностью »

image
Credit: Pieter van Dokkum, Roberto Abraham, Gemini, Sloan Digital Sky Survey

У Млечного Пути нашелся тёмный близнец. Тусклая массивная галактика Dragonfly 44(Стрекоза 44 — прим. переводчика) состоит из тёмной материи на рекордных 99.99% и может помочь переписать наши теории об образования галактик. Dragonfly 44 похожа на Млечный Путь по массе, но отличается по количеству звезд и структуре.

– Если взять Млечный Путь и из каждых 100 звёзд оставить одну, получится примерно то же самое – говорит Питер ван Доккум из Йельского университета. – Придется также взять эти оставшиеся звёзды и перемешать в блендере.
Эта галактика — не спиральная, как Млечный путь, но и не плоский диск.

Читать полностью »

Майя знали о нерегулярности синодического периода Венеры - 1
Обсерватория «Караколь» в городе Чичен-Ица, политическом и культурном центре майя на севере полуострова Юкатан. Фото: Gerardo Aldana

Летом 1952 года молодой физик Ричард Фейнман со своей красавицей-женой блондинкой Мэри-Лу отправились в свадебное путешествие в Мексику. Медовый месяц молодожёнов имеет прямое отношение к науке, потому что в каком-то маленьком городишке в Гватемале, «в самом центре ничего», как пишет Фейнман, был выставлен манускрипт, заполненный странными символами, картинками, штрихами и точками. Это была копия Дрезденского кодекса, созданного майя, оригинал которого хранится в Дрезденском музее.

Ричард Фейнман заинтересовался штрихами и точками в манускрипте. Он уже многое знал об индейцах майя — например, что они изобрели нуль и детально разбирались в астрономии, на столетия опередив в своих познаниях европейских астрономов.
Читать полностью »

Что будет, если отломить кусочек от нейтронной звезды?
Спросите Итана №79: самая маленькая нейтронная звезда - 1

Представьте, каково это, заснуть и не проснуться… А теперь представьте, каково это, проснуться, если ты не засыпал.
— Алан Уоттс

Иногда самые интересные эксперименты в физике можно проделывать только в своём воображении. Несмотря на физические ограничения, не позволяющие нам отправиться куда угодно, разрезать и детально изучить любой интересующий нас объект Вселенной, наше понимание материи – во всех её проявлениях – и законов, управляющих ею, продвинулось достаточно далеко.

Спросите Итана №79: самая маленькая нейтронная звезда - 2

На этой неделе мне сложно было выбрать самый интересный вопрос, но я остановился на этом взрывающем мозг вопросе от Руи Карвалхо, который звучит так:

Если бы мы отломили кусочек нейтронной звезды (кубический сантиметр) и удалили бы его от неё, что бы с ним случилось?

Что же это за звёзды такие – нейтронные?
Читать полностью »

Что случится со всеми звёздами Вселенной, когда они постареют? Ничто не может существовать вечно, и звёзды тоже не могут. Почему? Потому, что у них заканчивается топливо: например, весь водород превращается в гелий. Когда топливо кончается, что-то должно произойти. Как писал поэт Дилан Томас:

Покорно в ночь навек не уходи.
Борись, борись, чтоб день не угасал

Но то, что конкретно случается со звездой, очень сильно зависит от её массы.

Взрываются ли в конце концов звёзды? - 1

Если у вас есть махонькая звёздочка, менее 40% от массы Солнца, она сжигает весь водород, превращая его в гелий, и у неё не хватает массы, чтобы жечь гелий дальше. Солнце сможет превратить гелий в углерод и кислород, а ещё более массивные звёзды сожгут всё это и превратят в железо. Большинство звёзд из этой категории, когда у них закончится горючее, сначала расширятся в гигантскую звезду, а затем сожмутся в белого карлика.
Читать полностью »

Ох, эти звёзды… Гигантские топки ядерного синтеза. Они (как и наше Солнце) сжигают водород, превращая его в гелий (и другие элементы) и в процессе испускают очень много видимого света и энергии.

Почему коричневые карлики такие тусклые? - 1

Но если посмотреть на коричневого карлика, он не будет выглядеть, как нормальная звезда (из главной последовательности), как наше Солнце. Коричневые карлики не могут выдать достаточно давления для того, чтобы сгорающий водород превращался в гелий. Они могут лишь превращать водород в дейтерий.

Давайте присмотримся к различиям этих процессов. Ядро атома водорода — это просто протон, с массой 938,272 МэВ/c2 (я использую именно эти единицы, потому что их очень легко преобразовать в энергию, достаточно просто умножить на c2, так как E=mc2). Дейтрон, ядро дейтерия, содержит протон и нейтрон (с массой 939,566 МэВ/c2), но поскольку они связаны в месте, общая масса дейтрона немного меньше массы двух протонов, 1875,613 МэВ/c2. Поэтому при слиянии двух протонов, в результате которого появляется дейтрон, высвобождается энергия в 0,931 МэВ. Секундочку – это не совсем так… Также им нужно сохранить квантовые числа, типа зарядов и лептонного числа. Так им нужно произвести позитрон и нейтрино: но не волнуйтесь, позитрон аннигилирует в звезде с электроном и добавит вам дополнительных 0,511 МэВ энергии, и поднимет общую сумму до 1,442 МэВ на одну реакцию синтеза.
Читать полностью »

Достаточно сложно измерить даже магнитное поле Земли – как же мы тогда меряем его у Солнца, звёзд и удалённых галактик?

Не бывает ничего слишком чудесного, чтобы быть правдой, если только это согласуется с законами природы
— Майкл Фарадей

И снова у нас конец недели, и время для еженедельного ответа на ваши вопросы. Я просмотрел пришедшие вопросы, среди которых были и очень хорошие, но победителем становится Форбс Хирш, который спрашивает:

Как мы можем измерить магнитные свойства на расстоянии? Обычно это связано с Солнцем, северными или южными склонениями, силами, и т.п. Как мы можем «почувствовать» магнитные силы на таких расстояниях?

Начнём с того, чем мы занимаемся здесь, на Земле.

Спросите Итана №66: магнетизм издалека - 1

Магнитные поля сами по себе не оставляют видимых, различимых следов. Мы можем видеть доказательства их существования только по тому, как они воздействуют на отзывающиеся на магнитные силы предметы. Это намагниченные или намагничиваемые материалы или же заряженные частицы, двигающиеся сквозь магнитные поля.
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js