Рубрика «золотое сечение»

Недавно я задался вопросом: связано ли как-то наше желание везде видеть золотое сечение с какими-то сугубо культурными вещами, или же в этом скрыта какая-то более глубокая закономерность, связанная с устройством нашего мозга? Чтобы разобраться в этом вопросе, я решил сделать несколько вещей:

  1. Сформулировать конкретную гипотезу относительно данной закономерности. Я решил, что лучше всего подойдёт предположение, что наш мозг использует систему счисления, основанную на разложении чисел на степени золотого сечения, так как некоторые её особенности очень близки работе примитивных нейросетей: дело в том, что степени золотого сечения более высокого порядка можно разложить бесконечным числом способов в суммы степеней менее высокого порядка и даже отрицательных степеней. Таким образом, более высокая степень как бы «возбуждается» от нескольких низших степеней, тем самым проявляя то самое сходство с нейросетью.
  2. Описать конкретный способ её проверки: я выбрал мат. моделирование эволюции мозга посредством случайных изменений в простейшей возможной нейросети — матрице линейного оператора.
  3. Составить критерии подтверждения гипотезы. Моим критерием было то, что система счисления, основанная на золотом сечении, реализуется на нейросетевом движке при тех же объёмах информации с меньшим числом ошибок, чем двоичная.

Так как речь идёт о программировании, опишу поподробнее второй и третий пункты.
Читать полностью »

Как можно более равномерное распределение точек на сфере — невероятно важная задача в математике, науке и компьютерных системах, а наложение сетки Фибоначчи на поверхность сферы при помощи равновеликой проекции — чрезвычайно быстрый и эффективный метод аппроксимации для её решения. Я покажу, как благодаря незначительным изменениям его можно сделать ещё лучше.

Равномерное распределение точек на сфере - 1

Какое-то время назад этот пост появился на главной странице Hacker News. Его обсуждение можно прочитать здесь.

Введение

Задача равномерного распределения точек на сфере имеет очень долгую историю. Это одна из самых хорошо исследованных задач в математической литературе по сферической геометрии. Она имеет критическую важность во многих областях математики, физики, химии, в том числе в вычислительных методах, теории приближений, теории кодирования, кристаллографии, электростатике, компьютерной графике, морфологии вирусов и многих других.

К сожалению, за исключением нескольких особых случаев (а именно платоновых тел) невозможно идеально ровно распределить точки на сфере. Кроме того, решение задачи сильно зависит от критерия, который используется для оценки однородности. На практике используется множество критериев, в том числе:

  • Упаковка и покрытие
  • Выпуклые оболочки, ячейки Вороного и треугольники Делоне
  • Ядра $s$-энергии Риса
  • Кубатура и определители

Очень важно уяснить этот аспект: обычно не существует единственного оптимального решения этой задачи, потому что оптимальное решение, основанное на одном критерии, часто не является оптимальным распределением точек для других. Например, мы также выясним, что оптимизация упаковки необязательно создаёт оптимальную выпуклую оболочку и наоборот.

Ради краткости в этом посте мы рассмотрим только два критерия: минимальное расстояние упаковки и выпуклую оболочку/сетку Делоне (объём и площадь).
Читать полностью »

Сеточные системы координат, в которых плоскость делится на одинаковые симметричные элементы — на квадраты, треугольники, шестиугольники, достаточно известны. Им соответствуют квадратная, треугольная, шестиугольная симметрия. Но еще существует симметрия десятиугольная.
В ней плоскость не делится на десятиугольники, вместо этого все линии расположены под углами кратными 36°. Координаты в этой системе можно записывать целыми числами, по два целых числа на горизонтальное и вертикальное направление.

Тридцать шесть градусов красоты - 1

Расскажу как это нарисовать.

Читать полностью »

В одной из мозаик Пенроуза используются всего два ромба, отличающиеся углами. Из этих элементов можно выстроить апериодическую мозайку любых размеров. Для её отображения я попробовал представить координаты аналитически.

image

Распределение углов в ромбах в одном 1:4, 36°:144°, в другом 2:3, 72°:108°. Углы в ромбах кратны одной десятой полного разворота, 36°.

Определим координаты углов правильного десятиугольника.
Читать полностью »

Исследование положения глаз у более 1000000 лиц: правило золотого сечения или правило третей? - 1

Перевод поста Майкла Тротта (Michael Trott) "Profiling the Eyes: ϕaithful or ROTen? Or Both?".
Код, приведенный в статье, можно скачать здесь.

Выражаю огромную благодарность Полине Сологуб за помощь в переводе и подготовке публикации


Содержание

Исследование проявления золотого сечения в положении человеческих лиц на картинах и фотографиях
Уровень линии глаз на старых картинах — скорее ROT, чем φaithful
Высота линии глаз в современных картинах
Высота линии глаз в работах профессиональных фотографов
Высота линии глаз в селфи
Фото из профилей LinkedIn
Лица с обложек еженедельных журналов последних трех десятилетий
Обложки комиксов
Ежедневные газеты и журналы мод
Знаменитости из киноиндустрии
Кино: линия глаз в движении
Выводы


Исследование проявления золотого сечения в положении человеческих лиц на картинах и фотографиях

Существует огромное количество литературы, посвященной золотому сечению в природе, в физиологии и психологии, а также в произведениях искусства (см. эту статью о золотом сечении, и вот эти: о золотом сечении в искусстве, в природе и в человеческом теле, и еще — о структуре творческого процесса в науке и искусстве). В последние годы нарастает скептицизм по поводу распространенности золотой пропорции в этих областях. Были пересмотрены более ранние исследования. Смотрите, например, исследования греческих храмов Фотакиса, Марковского, Фостера, Холланда и Бенджафилда, и Свободовой и др. — по физиологии человека.
Читать полностью »

Золотое сечение в веб дизайне

Математическое понятие «Золотое сечение» известно с древних времен, этот принцип по сей день применяется во многих видах проектирования — от архитектуры до веб-дизайна. Хотя происхождение термина доподлинно неизвестно, примеры его использования можно встретить в истории: египтяне применяли золотое сечение при строительстве пирамид, а греки — при возведении Парфенона:Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js