В процессе своей научной работы у меня накопилось несколько интересных результатов, которые, с моей точки зрения, слабоваты для публикации в научном издании, однако сами по себе представляют интерес, например в области спортивного программирования. Один из таких результатов, который я сформулирую ниже, в некоторой вариации может быть предложен соискателю на собеседовании в крупную IT-компанию.
Итак, начну издалека. Я изучал стационарные локализованные структуры в одномерном уравнении Гросса-Питаевского, [пример работы]. Такие структуры, при некоторых достаточных условиях на параметры задачи, можно кодировать бесконечными в обе стороны символическими последовательностями, которые мы называем кодами. То есть, непрерывные решения дифференциального уравнения классифицируются дискретными кодами. Алфавит кодировки, как правило, конечен и состоит из некоторого нечетного числа символов, например из символов, где – натуральное число. В алфавите есть нулевой символ , а все остальные символы делятся на пары, связанные некоторой симметрией. Для простоты мы будем обозначать алфавит кодировки , где символы и симметричны друг другу. Число мы будем называть мощностью алфавита .