Рубрика «занимательная математика»

Представьте, что у вас нет под рукой калькулятора (но есть циркуль и линейка или угольник) и вам нужно посчитать результат в виде отрезка. Задача решается за менее чем 5 простых шагов.

Базовая формула вычисления

Для начала докажем одну формулу, которая нам будет помогать с дальнейшим решением.

Как с помощью циркуля и линейки находить корни, квадраты и обратные величины чисел - 1

В прямоугольном треугольнике ABCЧитать полностью »

Все мы знаем из школьного курса что такое системы счисления(СС). Но не все задумываются о том, на сколько затратны СС. Т.е. какой набор цифр нам необходим для представления числа в данной СС. Когда у нас есть ограниченный набор уникальных элементов (разноцветные камушки разных размеров), с помощью которого мы можем представить число, какое максимальное число мы можем представить используя эти элементы? (все красные камушки — это ноль, зелёные — один, синие — два и т.д., маленькие — нулевой разряд, средние — первый, большие — второй и т.д.). Где та грань, при которой основание СС играет большую роль чем разрядность числа?
Читать полностью »

Продолжаю знакомить читателей Хабра с главами из своей книжки «Теория счастья» с подзаголовком «Математические основы законов подлости». Это ещё не изданная научно-популярная книжка, очень неформально рассказывающая о том, как математика позволяет с новой степенью осознанности взглянуть на мир и жизнь людей. Она для тех кому интересна наука и для тех, кому интересна жизнь. А поскольку жизнь наша сложна и, по большому счёту, непредсказуема, упор в книжке делается, в основном, на теорию вероятностей и математическую статистику. Здесь не доказываются теоремы и не даются основы науки, это ни в коем случае не учебник, а то, что называется recreational science. Но именно такой почти игровой подход позволяет развить интуицию, скрасить яркими примерами лекции для студентов и, наконец, объяснить нематематикам и нашим детям, что же такого интересного мы нашли в своей сухой науке.

Опубликованные главы:

 •  Введение в мерфологию
 •  Закон арбузной корки и нормальность ненормальности
 •  Закон зебры и чужой очереди
 •  Проклятие режиссёра и проклятые принтеры

В этой главе мы порассуждаем о деньгах, рынках и энтропии, а также посмотрим на анимированные гифки, которых, увы, в книжке напечатать не получится.

Теория счастья. Термодинамика классового неравенства - 1

Читать полностью »

Продолжаю знакомить читателей Хабра с главами из своей книжки «Теория счастья» с подзаголовком «Математические основы законов подлости». Это ещё не изданная научно-популярная книжка, очень неформально рассказывающая о том, как математика позволяет с новой степенью осознанности взглянуть на мир и жизнь людей. Она для тех кому интересна наука и для тех, кому интересна жизнь. А поскольку жизнь наша сложна и, по большому счёту, непредсказуема, упор в книжке делается, в основном, на теорию вероятностей и математическую статистику. Здесь не доказываются теоремы и не даются основы науки, это ни в коем случае не учебник, а то, что называется recreational science. Но именно такой почти игровой подход позволяет развить интуицию, скрасить яркими примерами лекции для студентов и, наконец, объяснить нематематикам и нашим детям, что же такого интересного мы нашли в своей сухой науке.

Опубликованные главы:

 •  Введение в мерфологию
 •  Закон арбузной корки и нормальность ненормальности
 •  Закон зебры и чужой очереди

Теория счастья. Проклятие режиссёра и проклятые принтеры - 1

Мы порассуждаем о цейтнотах, дедлайнах и о невовремя ломающихся принтерах.

Читать полностью »

Продолжаю знакомить читателей Хабра с главами из своей книжки «Теория счастья» с подзаголовком «Математические основы законов подлости». Это ещё не изданная научно-популярная книжка, очень неформально рассказывающая о том, как математика позволяет с новой степенью осознанности взглянуть на мир и жизнь людей. Она для тех кому интересна наука и для тех, кому интересна жизнь. А поскольку жизнь наша сложна и, по большому счёту, непредсказуема, упор в книжке делается, в основном, на теорию вероятностей и математическую статистику. Здесь не доказываются теоремы и не даются основы науки, это ни в коем случае не учебник, а то, что называется recreational science. Но именно такой почти игровой подход позволяет развить интуицию, скрасить яркими примерами лекции для студентов и, наконец, объяснить нематематикам и нашим детям, что же такого интересного мы нашли в своей сухой науке.

Опубликованные главы:
 •  Введение в мерфологию
 •  Закон арбузной корки и нормальность ненормальности

Теория счастья. Закон зебры и чужой очереди - 1

Мы поговорим о фатуме, землетрясениях, очередях и замечательных процессах: пуассоновском потоке, случайном блуждании и немного о цепях Маркова.

Читать полностью »

Продолжаю знакомить читателей Хабра с главами из своей книжки «Теория счастья» с подзаголовком «Математические основы законов подлости». Это ещё не изданная научно-популярная книжка, очень неформально рассказывающая о том, как математика позволяет с новой степенью осознанности взглянуть на мир и жизнь людей. Она для тех кому интересна наука и для тех, кому интересна жизнь. А поскольку жизнь наша сложна и, по большому счёту, непредсказуема, упор в книжке делается, в основном, на теорию вероятностей и математическую статистику. Здесь не доказываются теоремы и не даются основы науки, это ни в коем случае не учебник, а то, что называется recreational science. Но именно такой почти игровой подход позволяет развить интуицию, скрасить яркими примерами лекции для студентов и, наконец, объяснить нематематикам и нашим детям, что же такого интересного мы нашли в своей сухой науке.

Опубликованные главы:

Это, одна из первых глав, в которой на примере велосипедиста рассматриваются нужные нам инструменты для измерения несправедливости: кривая Лоренца и индекс Джини, а также упоминаются пресловутый Парето и грозный инспектор.

Теория счастья. Введение в мерфологию - 1

Читать полностью »

Представляю на суд читателей Хабра неупорядоченные главы из своей книжки «Теория счастья» с подзаголовком «Математические основы законов подлости». Это ещё не изданная научно-популярная книжка, очень неформально рассказывающая о том, как математика позволяет с новой степенью осознанности взглянуть на мир и жизнь людей. Она для тех кому интересна наука и для тех, кому интересна жизнь. А поскольку жизнь наша сложна и, по большому счёту, непредсказуема, упор в книжке делается, в основном, на теорию вероятностей и математическую статистику. Здесь не доказываются теоремы и не даются основы науки, это ни в коем случае не учебник, а то, что называется recreational science. Но именно такой почти игровой подход позволяет развить интуицию, скрасить яркими примерами лекции для студентов и, наконец, объяснить нематематикам и нашим детям, что же такого интересного мы нашли в своей сухой науке.

В этой главе мы начнём с анализа арбузов и их корок, выясним их связь со знаменитым законом Мерфи и убедимся со всей строгостью в том, что о вкусах не спорят.

Теория счастья. Закон арбузной корки и нормальность ненормальности - 1

Читать полностью »

Люди прекрасно живут, не зная английского. Без английского легко можно сходить в магазин, провести диванную аналитическую консультацию, оплатить счета и высказаться о достоинствах мамки вашего оппонента.

Кривая обучения и кривые руки: неуемная фантазия + исследования физика Джеффри Уэста - 1

Под катом — несколько интересных графиков и эволюция сложных систем. И что с этим делать.
Читать полностью »

Раньше мы уже искали необычные модели Playboy с помощью библиотеки Python Scikit-learn. Теперь мы продемонстрируем некоторые возможности библиотек SymPy, SciPy, Matplotlib и Pandas на живом примере из разряда занимательных школьных задач по математике. Цель — облегчить порог вхождения при изучении Python библиотек для анализа данных.

Python и красивые ножки: как я бы знакомил сына с математикой и программированием - 1

Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js