В новостях часто встречается следующая схема ядерного электроракетного буксира.
Скорее всего, рисунок, как пишут, в воображении художника, с физикой и реальностью имеет мало общего. Читать полностью »
В новостях часто встречается следующая схема ядерного электроракетного буксира.
Скорее всего, рисунок, как пишут, в воображении художника, с физикой и реальностью имеет мало общего. Читать полностью »
Реакторы РБМК известны, прежде всего по Чернобыльской аварии. В свое время идея использовать зарекомендовавшую себя технологию промышленных реакторов-наработчиков плутония для создания простого ядерного энергоблока казалась вполне здравой и экономичной, особенно на первых этапах развития ядерной энергетики, ведь уже к 2000 году в СССР планировалось построить 400 гигаватт быстрых натриевых реакторов.
Однако реальность оказалась совсем не такой — простота обернулась катастрофичными просчетами в конструкции, а эксплуатировать эти реакторные установки приходится дольше первоначальных планов.
У реакторного графита есть такая неприятная особенность, что после набора определенной дозы нейтронного облучения он начинает распухать. На первом блок Ленинградской АЭС, запущенный в конце 1973 года в середине 2000х начали наблюдать, как увеличиваются и гнуться графитовые блоки кладки. К 2012 процесс подошел к пределам безопасной эксплуатации — прогиб некоторых технологических каналов превысил 60-70 мм (на длине 18 метров), некоторые графитовые блоки лопнули.
Атомная энергетика заслуженно считается одной из самых консервативных отраслей, достигшей вершины пути на своей S-кривой. Последние 25 лет внешний наблюдатель не заметил бы изменения в ключевых технология — все те же сборки из тепловыделяющих элементов, греющие или кипятящие воду, с преобразованием тепловой энергии в электрическую. Тем удивительнее тот факт, что свое будущее атомная энергетика видит в 6 революционных концепциях, каждая из которым по своему сдвигает парадигму атомной энергетики в ту или иную сторону.
Корпус исследовательского реактора на расплаве солей MSRE, 70е
Важен и тот факт, что все эти концепции возникли не сегодня, а на заре рождения атомной индустрии и проиграли в конкурентной борьбе за звание отраслевого стандарта реакторам с водой под давлением (PWR в западной терминологии или BBЭР в отечественной). Однако, как и в случае с электромобилями, постепенное накопление суммы технологий может вернуть на пьедестал забытых героев зари атомного века.
На предприятии ТВЭЛ «Машиностроительный завод» (ПАО «МСЗ», Электросталь) прошла приёмка первой опытной партии тепловыделяющих элементов (твэлов) ядерной энергодвигательной установки для дальних космических полётов. Во время приёмки проверили документацию и состояние самих твэлов — размеры, внешний вид, герметичность и т.д.
Разработка энергодвигательной установки мегаваттного класса началась в 2010 году, причём конструкция позволяет по этой технологии изготовлять и двигатели на 10 МВт. Опытный образец не имеющей аналогов в мире ядерной энергодвигательной установки Росатом рассчитывает представить в 2018 году.
Читать полностью »
Как-то раз я рассказывал про реактор МБИР, который начали строить в Димитровграде в этом году, и про ускорительный-термоядерный источник нейтронов IFMIF. Эти установки, объединяет то, что обе они являются прежде всего мощными источниками нейтронов, а задачей лабораторий вокруг них — изучение поведения материи в нейтронном потоке. Разница только в спектре — МБИР дает быстрый делительный спектр нейтронов, а IFMIF — сверхбыстрый термоядерный спектр.
Проектное изображение JHR. Сам реактор (его активная зона) — оранжевый цилиндр в нижней правой трети кадра.
Но интересно, что одновременно в мире строятся еще два рекордно ярких источника нейтронов — реактор Julez Horowiz Reactor (JHR) с тепловым/промежуточным спектром и ускорительный источник ESS с холодным/ультрахолодным спектром.
Читать полностью »
В Димитровграде сегодня официально стартовало строительство многоцелевого исследовательского ядерного реактора на быстрых нейтронах МБИР. Он будет использоваться для научно-исследовательских целей и развития атомной энергетики. Ввод реактора в эксплуатацию намечен на 2020 год.
Проект выполняется в рамках Федеральной целевой программы "Ядерные энерготехнологии нового поколения на период 2010-2015 годов и на перспективу до 2020 года".
Цели программы:
Это был очень неудачный день для радиационно устойчивого робота-трансформера, изучающего место аварии. 10 апреля токийская энергетическая компания (TEPCO) отправила робота глубоко внутрь радиоактивной глыбы, которая ранее была ядерным реактором АЭС «Фукусима-1», чтобы попытаться найти топливные стержни, которые, так сказать, пропали без вести (похоже, что они упали на дно реактора). К несчастью для TEPCO и их бедного маленького робота, он застрял примерно через пять часов, но продолжал отправлять важные данные.
Читать полностью »
Как вы считаете, что изображено на фото? Да, конечно, в заголовке дан и ответ, но все же, признать в этой груде «поленьев» ядерный реактор может только человек, знакомый с историей становления ядерной энергетики, и хорошо знакомый. «Поленница» была создана в 1942 году для проверки возможности осуществления управляемой цепной ядерной реакции.
Правительство Индии дало разрешение на начало строительства экспериментального ториевого реактора на 300 МВт, первого ториевого реактора в мире. Станции такого типа считаются настолько безопасными, что их можно строить прямо в городской черте, хотя экспериментальный реактор всё-таки построят вдали от города (сейчас выбирают из двух площадок).
Конструкция реактора AHWR (advanced heavy water reactor) представляет собой продвинутый вариант тяжеловодного ядерного реактора, использующий канальную архитектуру, а также обычную воду в качестве теплоносителя. Замедлитель (тяжёлая вода D2O) находится в отдельных от теплоносителя каналах под пониженным давлением.
Читать полностью »
В 1974 году компания Kodak закупила малый ядерный реактор и установила его в подземном бункере на территории промышленного комплекса Kodak Park в Рочестере, штат Нью-Йорк. Умножитель потока нейтронов использовался для экспериментов в нейтронной фотографии, которые продолжались до 2007 года.
Источником нейтронов был калифорний-252, умножителями потока служили пластинки с ураном, а в качестве отходов в лаборатории накапливался высокообогащённый уран. По словам специалистов, для американского промышленного сектора это был уникальный прибор. В мире существует не более 50 подобных установок, и почти все они находятся в России, и ни у одной американской компании такой не было, только у Kodak.
О существовании подземного бункера 7х4 м под зданием Building 82 не знали ни власти города Рочестер, ни власти штата Нью-Йорк, и даже почти никто из сотрудников Kodak, кроме нескольких инженеров и руководства компании. Информация сейчас просочилась в открытый доступ благодаря откровениям одного из бывших сотрудников Kodak, который работал с реактором почти двадцать лет. Сведения подтвердили в Комиссии по ядерному регулированию США.
Читать полностью »