Рубрика «xgboost»

Предисловие

Читать полностью »

В реальном внедрении ML само обучение занимает от силы четверть усилий. Остальные три четверти — подготовка данных через боль и бюрократию, сложный деплой часто в закрытом контуре без доступа в интернет, настройка инфраструктуры, тестирование и мониторинг. Документы на сотни листов, ручной режим, конфликты версий моделей, open source и суровый enterprise — все это ждет data scientist’а. Но такие «скучные» вопросы эксплуатации ему не интересны, он хочет разработать алгоритм, добиться высокого качества, отдать и больше не вспоминать.

Возможно, где-то ML внедряется легче, проще, быстрее и одной кнопкой, но мы таких примеров не видели. Все, что выше — опыт компании Front Tier в финтехе и телекоме. О нем на HighLoad++ рассказал Сергей Виноградов — эксперт в архитектуре высоконагруженных систем, в больших хранилищах и тяжелом анализе данных.

Жизненный цикл ML в боевых условиях - 1
Читать полностью »

Rekko — персональные рекомендации в онлайн-кинотеатре Okko

Знакома ли вам ситуация, когда на выбор фильма вы тратите гигантское количество времени, сопоставимое со временем самого просмотра? Для пользователей онлайн-кинотеатров это частая проблема, а для самих кинотеатров — упущенная прибыль.

К счастью, у нас есть Rekko — система персональных рекомендаций, которая уже год успешно помогает пользователям Okko выбирать фильмы и сериалы из более чем десяти тысяч единиц контента. В статье я расскажу вам как она устроена с алгоритмической и технической точек зрения, как мы подходим к её разработке и как оцениваем результаты. Ну и про сами результаты годового A/B теста тоже расскажу.

Читать полностью »

Иногда для того, чтобы решить какую-то проблему, надо просто взглянуть на нее под другим углом. Даже если последние лет 10 подобные проблемы решали одним и тем же способом с разным эффектом, не факт, что этот способ единственный.

Есть такая тема, как отток клиентов. Штука неизбежная, потому что клиенты любой компании могут по множеству причин взять и перестать пользоваться ее продуктами или сервисами. Само собой, для компании отток — хоть и естественное, но не самое желаемое действие, поэтому все стараются этот отток минимизировать. А еще лучше — предсказывать вероятность оттока той или иной категории пользователей, или конкретного пользователя, и предлагать какие-то шаги по удержанию.

Анализировать и пытаться удержать клиента, если это возможно, нужно, как минимум, по следующим причинам:

  • привлечение новых клиентов дороже процедур удержания. На привлечение новых клиентов, как правило, нужно потратить определенные деньги (реклама), в то время как существующих клиентов можно активизировать специальным предложением с особыми условиями;
  • понимание причин ухода клиентов — ключ к улучшению продуктов и услуг.

Существуют стандартные подходы к прогнозированию оттока. Но на одном из чемпионатов по ИИ мы решили взять и попробовать для этого распределение Вейбулла. Чаще всего его используют для анализа выживаемости, прогнозирования погоды, анализа стихийных бедствий, в промышленной инженерии и подобном. Распределение Вейбулла — специальная функция распределения, параметризуемая двумя параметрами $λ$ и $k$.

Как мы предсказывали отток, подойдя к нему как к стихийному бедствию - 3
Википедия

В общем, вещь занятная, но для прогнозирования оттока, да и вообще в финтехе, использующаяся не так, чтобы часто. Под катом расскажем, как мы (Лаборатория интеллектуального анализа данных) это сделали, попутно завоевав золото на Чемпионате по искусственному интеллекту в номинации «AI в банках».
Читать полностью »

Пишем XGBoost с нуля — часть 2: градиентный бустинг - 1

Всем привет!

В прошлой статье мы разбирались, как устроены решающие деревья, и с нуля реализовали
алгоритм построения, попутно оптимизируя и улучшая его. В этой статье мы реализуем алгоритм градиентного бустинга и в конце создадим свой собственный XGBoost. Повествование будет идти по той же схеме: пишем алгоритм, описываем его, в заверешение подводим итоги, сравнивая результаты работы с аналогами из Sklearn'а.

В этой статье упор тоже будет сделан на реализацию в коде, поэтому всю теорию лучше почитать в другом вместе (например, в курсе ODS), и уже со знанием теории можно переходить к этой статье, так как тема достаточно сложная.

Пишем XGBoost с нуля — часть 2: градиентный бустинг - 2
Читать полностью »

В мире машинного обучения одними из самых популярных типов моделей являются решающее дерево и ансамбли на их основе. Преимуществами деревьев являются: простота интерпретации, нет ограничений на вид исходной зависимости, мягкие требования к размеру выборку. Деревья имеют и крупный недостаток — склонность к переобучению. Поэтому почти всегда деревья объединяют в ансамбли: случайный лес, градиентный бустинг и др. Сложной теоретической и практической задачей является составление деревьев и объединение их в ансамбли.

В данной же статье будут рассмотрены процедура формирования предсказаний по уже обученной модели ансамбля деревьев, особенности реализаций в популярных библиотеках градиентного бустинга XGBoost и LightGBM. А так же читатель познакомится с библиотекой leaves для Go, которая позволяет делать предсказания для ансамблей деревьев, не используя при этом C API оригинальных библиотек.
Читать полностью »

Успех в проектах по машинному обучению обычно связан не только с умением применять разные библиотеки, но и с пониманием той области, откуда взяты данные. Отличной иллюстрацией этого тезиса стало решение, предложенное командой Алексея Каюченко, Сергея Белова, Александра Дроботова и Алексея Смирнова в конкурсе PIK Digital Day. Они заняли второе место, а спустя пару недель рассказали о своём участии и построенных моделях на очередной ML-тренировке Яндекса.

Алексей Каюченко:
— Добрый день! Мы расскажем о соревновании PIK Digital Day, в котором мы участвовали. Немного о команде. Нас было четыре человека. Все с абсолютно разным бэкграундом, из разных областей. На самом деле, мы на финале познакомились. Команда сформировалась буквально за день до финала. Я расскажу про ход конкурса, организацию работы. Потом выйдет Сережа, он расскажет про данные, а Саша расскажет уже про сабмишен, про финальный ход работы и про то, как мы двигались по лидерборду.

Читать полностью »

Недавно мы провели хакатон, посвящённый использованию сигналов от пользователей в предсказании погоды. Сегодня я расскажу читателям Хабра, почему устроить такое соревнование — едва ли не более сложная задача, чем удачно в нём выступить, какие методы за 30 часов успели придумать участники, и как мы используем результаты хакатона.

30-часовой хакатон Яндекс.Погоды, или как предсказать осадки по сигналам от пользователей - 1

Яндекс.Погода сегодня — большой комбайн по обработке показаний, не имеющих привязки к конкретному пользователю. Сервис строит прогноз с точностью до дома за счёт машинного обучения на данных, полученных от крупных метеорологических организаций. Наш недавний запуск всемирных погодных карт — очередной важный шаг в развитии этой системы. Но есть и другие данные, которые могут позитивно сказаться на точности прогноза.

Читать полностью »

Привет! Хочу поделиться своим опытом классификации пользователей социальной сети по их комментариям на два класса по складу ума: гуманитарный или технический. В данной статье не будут использоваться последние достижения глубокого обучения, но будет разобран завершенный проект по классификации текстов: от поиска подходящих данных до предсказаний. В конце будет представлено веб-приложение, в котором вы сможете проверить себя.

Классификация на гуманитариев и технарей по комментариям в VK - 1

Читать полностью »

Сообщество Open Data Science (ODS) уже известно на Хабре по открытому курсу машинного обучения (OpenML). Сегодня мы поговорим с его создателем об истории ODS, людях и наиболее популярных методах машинного обучения (по версии Кaggle и проектам индустрии). За интересными фактами и технической экспертизой — прошу под кат.

Создатель Open Data Science о Slack, xgboost и GPU - 1

Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js