Рубрика «word2vec» - 2

Пирожки в Go - 1

В продолжение эпопеи с дистрибутивно-семантическими пирожками (и в погоне за модными тенденциями) решил переписать веб-сервис с лапидарного Питона на прогрессивный Go. Заодно был вынужден перенести и всю «интеллектуальную» часть (благо, не бином Ньютона). Сделать это оказалось куда проще и приятней, чем предполагал в начале. Впрочем, на медово-синтаксическом празднике жизни не обошлось без ложки дёгтя — самая быстрая гошная «числодробилка», какую смог найти (mat из gonum) таки уступила по скорости питоновской связке numba + numpy.
Читать полностью »

В последнее время для оценки семантического сходства широкое распространение получили методы дистрибутивной семантики. Эти подходы хорошо показали себя в ряде практических задач, но они имеют ряд жёстких ограничений. Так, например, языковые контексты оказываются сильно схожими для эмоционально полярных слов. Следовательно, антонимы с точки зрения word2vec часто оказываются близкими словами. Также word2vec принципиально симметричен, ведь за основу берётся совстречаемость слов в тексте, а популярная мера сходства между векторами — косинусное расстояние — также не зависит от порядка операндов.

Мы хотим поделиться с сообществом собранной нами базой ассоциаций к словам и выражениям русского языка. Этот набор данных лишён недостатков методов дистрибутивной семантики. Ассоциации хорошо сохраняют эмоциональную полярность и они по своей природе асимметричны. Подробнее расскажем в статье. Читать полностью »

Русскоязычный чат-бот Boltoon: создаем виртуального собеседника - 1

Несколько лет назад было опубликовано интервью, в котором говорят об искусственном интеллекте и, в частности, о чат-ботах. Респондент подчеркивает, что чат-боты не общаются, а имитирует общение.

В них заложено ядро разумных микродиалогов вполне человеческого уровня и построен коммуникативный алгоритм постоянного сведения разговора к этому ядру. Только и всего.

На мой взгляд, в этом что-то есть…

Тем не менее, о чат-ботах много говорят на Хабре. Они могут быть самые разные. Популярностью пользуются боты на базе нейронных сетей прогнозирования, которые генерируют ответ пословно. Это очень интересно, но затратно с точки зрения реализации, особенно для русского языка из-за большого количества словоформ. Мной был выбран другой подход для реализации чат-бота Boltoon.
Читать полностью »

Начать стоит от печки, то есть с постановки задачи. Откуда берется сама задача word embedding?
Лирическое отступление: К сожалению, русскоязычное сообщество еще не выработало единого термина для этого понятия, поэтому мы будем использовать англоязычный.
Сам по себе embedding — это сопоставление произвольной сущности (например, узла в графе или кусочка картинки) некоторому вектору.
image

Читать полностью »

image

Вы никогда не задумывались, почему тексты классических русских писателей так ценятся, а сами писатели считаются мастерами слова? Дело явно не только в сюжетах произведений, не только в том, о чём написано, но и в том, как написано. Но при быстром чтении по диагонали осознать это трудно. Кроме того, текст какого-нибудь значимого романа нам просто не с чем сравнить: почему, собственно, так прекрасно, что в этом месте появилось именно это слово, и чем это лучше какого-то другого? В какой-то мере реальное словоупотребление могло бы контрастно оттенить потенциальное, которое можно найти в черновиках писателя. Писатель не сразу вдохновенно пишет свой текст от начала до конца, он мучается, выбирает между вариантами, те, что кажутся ему недостаточно выразительными, он вычеркивает и ищет новые. Но черновики есть не для всех текстов, они отрывочны и читать их сложно. Однако можно провести такой эксперимент: заменить все поддающиеся замене слова на похожие, и читать классический текст параллельно с тем, которого никогда не было, но который мог бы возникнуть в какой-то параллельной вселенной. Попутно мы можем попытаться ответить на вопрос, почему это слово в этом контексте лучше, чем другое, похожее на него, но всё-таки другое.

А сейчас всё это (кроме собственно чтения) можно сделать автоматически.Читать полностью »

Модели Word2Vec

Как было упомянуто в первой части публикации, модели получаются из classes — представления результата текста word2vec виде ассоциативно-семантических классов путем сглаживания распределений.
Идея сглаживания в следующем.
Читать полностью »

В данном посте мы рассмотрим современные подходы, применяемые для классификации текстов на естественном языке по их тематикам. Выбранные методы работы с документами определены общей сложной спецификой задачи – зашумлёнными обучающими выборками, выборками недостаточного размера или вообще отсутствующими выборками, сильным перекосом размеров классов и так далее. В общем – реальные практические задачи. Прошу под кат.
Читать полностью »

Существует огромное количество алгоритмов кластеризации. Основная идея большинства из них – объединить одинаковые последовательности в один класс или кластер на основе сходства. Как правило, выбор алгоритма определяется поставленной задачей. Что касается текстовых данных, то здесь сравниваемыми составляющими служат последовательности слов и их атрибутов (например, вес слова в тексте, тип именованной сущности, тональность и пр.). Таким образом, тексты изначально преобразуются в вектора, с которыми производят разного типа манипуляции. При этом, как правило, возникает ряд проблем, связанных с: выбором первичных кластеров, зависимостью качества кластеризации от длины текста, определением общего количества кластеров и т.п. Но наиболее сложной проблемой является отсутствие связи между близкими по смыслу текстами, в которых используется разная лексика. В таких случаях объединение должно происходить не только на основе сходства, а еще и на основе семантической смежности или ассоциативности.
Кластеризация текстовых документов по семантическим признакам (часть первая: описание алгоритма) - 1
Читать полностью »

Волею судеб в мои руки попал обученный на поисковых запросах Word2Vec. Под катом даны примеры использования с пояснениями.
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js