В рамках проекта интеграции GridGain и хранилища на базе Hadoop (HDFS + HBASE) мы столкнулись с задачей получения и обработки существенного объема данных, примерно до 80 Тб в день. Это необходимо для построения витрин и для восстановления удаленных в GridGain данных после их выгрузки в наше долговременное хранилище. В общем виде, можно сказать, что мы передаём данные между двумя распределёнными системами обработки данных при помощи распределённой системы передачи данных. Соответственно, мы хотим рассказать о тех проблемах, с которыми столкнулась наша команда при реализации данной задачи и как они были решены.
Так как инструментом интеграции является кафка (весьма подробно об этом инструменте описано в статье Михаила Голованова), естественным и легким решением тут выглядит использование SparkStreaming. Легким, потому что не нужно особо беспокоиться о падениях, переподключениях, коммитах и т.д. Spark известен, как быстрая альтернатива классическому MapReduce, благодаря многочисленным оптимизациям. Нужно лишь настроиться на топик, обработать батч и сохранить в файл, что и было реализовано. Однако в ходе разработки и тестирования была замечена нестабильность работы модуля приема данных. Для того чтобы исключить влияние потенциальных ошибок в коде, был произведен следующий эксперимент. Был выпилен весь функционал обработки сообщений и оставлено только прямое сохранение сразу в avro:
Читать полностью »